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Context & motivation



NRCS water supply forecasting: continuing a 5,000 year mission

Ancient Mesopotamia: the first (or 
among the first) to invent
• the wheel
• agriculture
• writing
• math
• and most importantly of all, beer

Name derives from the ancient Greek 
for “between rivers”

Water resource management was 
foundational to the development of 
human civilization – and still ishttps://commons.wikimedia.org/wiki/File:N-Mesopotamia_and_Syria_english.svg (Goran tek-en)



Operational water supply forecasting (WSF) in the US West

Forecasts that are typically issued once per month (officially; also more frequent updates), usually
beginning in winter, of spring-summer total flow volume for a given point on a given river,
performed by institutions having direct accountabilities to end users around reliable generation of
forecast products

• Operational WSFs & the hydrological models and data underlying them provide a practical basis 
for water resource management throughout the North American West

• Snowpack:
• US West precipitation is primarily in winter, and mainly as mountain snowpack stored until spring
• 70-80% of total regional runoff in the 3 largest ranges (Rockies, Sierra Nevada, Cascades): snowmelt
• Water demand: strongest in spring-summer
• Snowpack = huge de facto reservoir, and snowpack data = main source of WSF skill (predictors in 

statistical models, features in machine learning models, data assimilation in process models)
• USDA SNOTEL network and products derived from it are primary source of snowpack data

• Various other variables also used operationally (precipitation, antecedent flows, climate indices)
• Intensive research on additional predictors (snow remote sensing, seasonal climate models, etc.)



NRCS WSF

• National Water and Climate Center of the 
NRCS operates the largest stand-alone 
operational WSF system in the US West

• May be the largest statistical operational 
WSF system in the world

• > 600 forecast locations
• Each with multiple issue dates (forecast 

dates) and target periods (forecast horizons)
• Several statistical and process simulation 

systems in use
• Core method forming official forecast is 

principal component regression (PCR)

US Department of Agriculture NRCS NWCC



What is PCR?

• Principal component regression (PCR)
• Introduced to WSF by David Garen (1992) at NRCS, since adopted for operational WSF at many 

other organizations elsewhere
• Principal component analysis (PCA) is applied to input variables
• Resulting PC scores are candidate predictor variates in forward stepwise multiple linear regression

• PCR addresses multicollinearity & reduces dimensionality of input variables
• E.g.: SWE measurements at multiple SNOTEL sites provide operational redundancy & capture 

spatial heterogeneity, but form a high-dimensional & multicollinear dataset

• NRCS implementation follows a specific path
• Simple tree-based algorithm used for optimal input variable selection
• Statistical significance tests used for optimal PC mode retention
• Probabilistic method: prediction intervals generated using a common heuristic based on the 

quantiles of a normal distribution having a mean equal to the regression prediction and a standard 
deviation equal to the regression standard error

• Official forecasts (end products) are 90%, 70%, 50%, 30%, and 10% exceedance probability flows



Essential context to operational WSF system design



Preparatory steps

Thorough assessment of needs and options before undertaking system design:

• Clearly document existing NRCS WSF system
First implemented about 25 years ago; operational forecasting systems are complex & organic, evolving over time

• Assess abilities and limitations of current system
Included documentation of known issues & completion of advanced statistical diagnostics

• Comprehensively review data-driven WSF modeling progress
Assess for potential relevance to NRCS operations, including topics like longer lead times using climatic forcing 
data, more advanced statistical & machine learning methods, ensemble modeling, statistical-process simulation 
modeling hybrids, & other research directions

• Assess implications of global anthropogenic climate change on WSF
Mainly around a need for improved seasonal prediction capabilities given an increasingly unpredictable 
hydroclimatic system, with lower snowpack and possibly greater variability, while water demand increases

• Develop initial blueprint & several preliminary scoping models
On the basis of foregoing preliminary steps and NRCS system requirements, experiment with some concepts 
potentially underlying a new approach and assess their suitability for inclusion in the full prototype system



Model characteristics & selection matrix

Characteristic Process simulation Statistical regression model Machine learning

Cost/ease/requirements terrible to moderate very good to excellent moderate to very good

Code reliability very poor to excellent moderate to excellent good to excellent

Code transparency terrible to excellent very good to excellent moderate to excellent

Physical interpretability moderate to excellent poor to very good very poor to very good

Deterministic accuracy terrible to very good moderate to very good very good to excellent

Probabilistic accuracy terrible to moderate moderate to excellent moderate to excellent

Innovation/opportunities terrible to very good terrible to good excellent

• Which class of models is “best” depends on what you’re aiming to do
• Main punch lines around machine learning as relevant to NRCS WSF:

• Overwhelmingly good bang for the buck as a predictive tool
• Leverage the data science all around us in our everyday lives to produce better, cheaper WSFs
• But can’t just throw machine learning at WSF and expect it to work right: must approach this in 

a very application-specific way, carefully choosing/developing the right tools for the job



Machine learning and hydrologic prediction

• Long and somewhat mixed history
• Research papers using AI for river forecasting date back to 1995
• Yet true operationalization is mostly very recent (as far as most of us know…)

• Several specific stumbling blocks 
• Lack of probabilistic forecasts
• Absence of a good storyline around physical hydroclimatic process for most AI models
• Skepticism in high-stakes operational settings where existing techniques are well-established 

and new methods in the research literature are unproven and sometimes oversold
• Misunderstandings and lack of technical training and professional familiarity among many 

physical scientists with AI, its strengths, and its limitations

• But things have changed
• Just about everyone is getting used to the idea of AI
• Tools are far more accessible, and methods are far more diversified
• Explainability, overtraining, and prediction uncertainty estimation questions can be addressed 

with careful AI design and implementation choices



Convergence of knowledge, tools, and requirements

Hydrologic science
Detailed body of knowledge 

around physical process in water 
resource science

Machine learning
A balanced understanding of 
available AI methods, their 

capabilities, and their limitations

Operational 
forecasting

Strong professional/organizational 
accountabilities around getting 

the job done every day and 
publicly standing by the product

Intersection:

Need to build AI prediction 
systems that align with 

domain-expert expectations 
around consistency with both 

physical hydrologic science 
and organizational 

requirements of operational 
prediction organizations



Some key design criteria

1. Improved forecast accuracy
2. Improved potential for automation
3. Relatively low cost and good ease of development, implementation, and operation
4. Seamlessly address three known issues: (a) nonlinear functional forms, and (b) 

heteroscedastic and (c) non-Gaussian residuals
5. Modular and expandable
6. Geophysically interpretable forecasts
7. Achieve balance between visibly demonstrating innovation & performance gains vs. 

construction from established building blocks using proven tools
8. Multi-method ensemble approach: required to address equifinality and model selection 

uncertainty over diverse geophysical environments across the US West
9. Accommodate high-dimensional multicollinear predictor datasets and potential for 

multiple independent input signals: will only grow more important in the future with 
more spatially distributed inputs



Multi-method machine learning metasystem (M4)



Solution: a hybrid prediction analytics engine

• Several very carefully selected 
modeling threads: handle 
heteroscedastic & non-Gaussian 
residuals + nonlinearity, allow 
physicality constraints like 
monotonicity & non-negativity

• Combine with dimensionality 
reduction using statistical pattern 
recognition, a genetic algorithm for 
optimizing feature creation and 
selection, some parallelization 
across processor cores, a flexible 
architecture, a degree of AutoML, 
and physicality checks and 
adjustments

• Forms an integrated, modular, 
ensemble forecasting metasystem



• Operational hydrologist-directed features engineering 
• Reflects end user knowledge around representativeness, reliability, quirks and capabilities, of 

potential input variables & measurement sites & geophysical interpretations of PCA modes
• Key location in AI development process for domain experts to insert physical hydrologic knowledge

• Reframe as a low-dimensional problem with a parsimonious solution
• PCA data pre-processing & compact ML architectures enable visualizing input-output relationships

• Monotonicity constraints
• Some feature-target relationships are known to be significantly nonlinear but monotonic
• Certain AI methods allow a monotonicity constraint to be enforced; also encourages regularization

• Non-negativity constraints
• Negative-valued flow volume predictions are non-physical yet can happen in some prediction systems
• Certain AI methods allow a non-negativity constraint to be enforced
• M4 also includes algorithmic logic to test final forecast distribution for non-negativity and sequentially 

prune individual ensemble members if constraint is violated

Toward achieving AI intersections with process physics



• Completely hands-off operation not desired, 
but streamlining/automation of many tasks is: 
leads to judicious use of AutoML

• Most optimization & decision points in the 
overall prediction algorithm (including values of 
some machine learning hyperparameters, e.g., 
around regularization) are automated with 
options for manual overrides

• Others have been pre-calibrated to reasonable 
values for this application on the basis of 
experimentation using various NRCS WSF test 
cases and problem setups

• Example: locate reasonable default values for 
pop size & # generations in genetic algorithm

AutoML
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• Owyhee River near 
Rome, April 1 forecast 
of April-July volume

• Particularly 
troublesome forecast 
point

• Here, use up to four 
PCA modes derived 
from candidate input 
variable pool of up to 
18 SNOTEL SWE & 
precipitation datasets

Application example



Linear PCR

• Linear PCR solution produces best-estimate predictions that are physically impossible: 
runoff volume can’t be negative

• Homoscedastic Gaussian assumptions do not generate required time-varying prediction 
bound widths: too wide in low-flow years, too narrow in high-flow years

• This is fixable in PCR using predictand transforms – but it’s a manual process, and…
• Time-consuming & labor-intensive
• Dependent on expert opinion & not objectively reproducible: reliability & defensibility issues
• Cannot separate distributional issues from functional form issues 
• Basically unsatisfying: should pick models that suit the data, not change the data to suit the model
• Smart choice if linear PCR is all that is readily available, but recently, options have grown massively



M4

• Multi-model prediction engine generates forecasts that…
• are physically reasonable, in particular non-negative, from the 90% to the 10% exceedance flows
• have prediction bounds that can vary in width from year to year, if needed
• have prediction bounds that can be asymmetric about the best estimate, if needed
• are relatively robust to outliers due to use of median as best estimate in some constituent models
• are automated, don’t require extensive user intervention/subjective judgement, and are reproducible: 

fast, reliable, objective
• use up-to-date advanced statistical and machine learning techniques and philosophies specifically 

suited to accurate prediction of complex, open, nonlinear systems
• show forecast skill better than linear PCR as measured by several cross-validated performance metrics

• … yet is still relatively simple and cheap to build and operate.



Hindcast testing

• 20 test cases spanning diverse geophysical 
environments & statistical characteristics across 
the western US and Alaska

• Use PCR as a challenging benchmark: well-
established method about on par with ESP 

• Ensemble mean M4 prediction always meets or 
beats linear PCR in terms of deterministic and 
probabilistic performance metrics and 
physicality

• Always more consistent than, and often 
outperforms, any of its constituent models

• After candidate predictor selection, completely 
hands-off automated use



Operational testing

• Live operational testing at subset of 5 forecast 
locations during 2020 forecast season alongside 
existing operational system

• Confirmed feasibility of workflows in time-and 
data-constrained genuine operational setting

• Easily rebuilt some models on-the-fly due to 
COVID-19 related snow course data absences

• Confirmed physical interpretability of 
predictions, forming straightforward ‘storyline’ 
for the issued forecast in terms of current 
hydroclimatic conditions and watershed 
characteristics



Conclusions



• Further software development
• Streamline code and work with software development team to build UI (GUI, IT/database linkages, 

interactive capabilities around graphics, mapping, and data pre-processing & forecast distribution 
post-processing)

• Other R&D directions
• Continue R&D on topics not covered here: supplementing PCA with NMFk, using snow remote 

sensing or assimilation data as WSF inputs, integrating other AIs into the modular metasystem, 
experimenting with new sources of seasonal climate prediction information, etc.

• Explore using M4 as a more generalized forecast integration platform
• Expand scope by ingesting probabilistic forecasts from external process-simulation models (e.g., 

NWS RFS ESPs, NRCS PRMS ESPs, NOAA National Water Model, etc.) into the multi-technique 
metasystem’s final ensemble – opportunity for re-establishing interagency forecast coordination?

Current & next steps



• For technical details of M4 see peer-reviewed AI literature: 
Fleming SW, Goodbody AG.  2019.  A machine learning metasystem for robust 
probabilistic nonlinear regression-based forecasting of seasonal water availability 
in the US West.  IEEE Access, 7, 119943-119964, doi:10.1109/ACCESS.2019.2936989

• Additional papers in progress address application from a water resource perspective & 
document other AI directions we are pursuing

• Feel free to reach out to us: sean.fleming@usda.gov

For further information


