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Abstract

This example was constructed as a simple example based on the control volume concept
in order to illustrate the basic principles of plug-and-play, or component-based modeling.
(The control volume concept lies at the core of fluid dynamics and all conservation laws.)
These principles are used by most modern, model coupling frameworks such as CSDMS
(Community Surface Dynamics Modeling System) and OMS (Object Modeling System).
This example has a simple set of state variables, h(t), V (t), v(t) and Qout(t) that describe
the state of the system as a function of time. It also has a simple set of configuration
parameters that are fixed at the start of a model run (in the model’s configuration file)
and serve to set up the problem. These are Atop, Aout and h0. The rainfall rate, R, can
be viewed as a driver or forcing variable for the problem, which could be obtained from
another model component that is coupled to the water tank model component, or read
from a data file. This example is simpler than typical computational models in that there
is an analytic solution, so numerical methods of solving differential equations, which can
become unstable, are not needed. Also, it doesn’t require a discretization of space, so there
is no spatial grid, which would introduce additional complexity.

1 Theory

Consider a cylindrical water tank, so that all horizontal cross-sections have the same shape,
with an area given by, Atop. Assume that the vertical height of the tank, although not
specified, is always large enough to accommodate the water depth in the tank, h(t). (That
is, assume that “overtopping” is not possible.) Assume also that the top of the water tank
is open to the sky, and that there is a small outlet at the bottom of the tank that allows
it to drain due to gravity. The volume flow rates (or discharges) into and out of the water
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tank are given by:

Qin = RAtop (1)

Qout = v Aout, (2)

where R is the rainfall rate, Atop is the top area of the water tank, Aout is the cross-sectional
area of the tank outlet, and v(t) is the mean flow velocity in the outlet. Since the cross-
sectional area of the tank doesn’t change in the vertical dimension, the volume of water in
the tank at time t is given by V (t) = Atop h(t). The time derivative of V (t) is therefore
given by:

dV

dt
= Atop

dh

dt
= Qin −Qout. (3)

When R = 0, one can use unsteady conservation of energy (for an inviscid, incompressible
fluid) to derive a differential equation that governs the depth of water in the tank, h(t)
(see Libii (2003) for more information), namely

2 g h =

(
dh

dt

)2
[(

Atop

Aout

)2

− 1

]
. (4)

This equation results from assuming that the tank is draining slowly, so that the second
derivative of h(t) is much smaller than the gravitational constant, g. The closed-form
solution to this ODE is

h(t) = h0

(
1 − t

td

)2

, (5)

where td is the time to completely drain the tank. Notice that h(0) = h0 and h(td) = 0.
Inserting (5) into (4) and simplifying, we find that

td =

(
2h0
g

)1/2
[(

Atop

Aout

)2

− 1

]1/2
. (6)

For example, if the tank has a top radius of 30 meters, an outlet radius of 5 centimeters
and an initial water depth of h0 = 1 meter, it will take 45.15 hours for the tank to drain
completely when R = 0. Note, however, that if we double the initial depth to 2 meters
(keeping other parameters the same), the tank will take 63.85 hours to drain — not twice
as long. If the tank did not have an outlet, but R > 0, then the time to fill the tank from
a depth of 0 to a depth of df would be given by tf = df/R. Using (3) (with R = 0) and
computing h′(t) from (5), it can be shown that the v(t) appearing in (2) is given by

v(t) = [2 g h(t)]1/2
Atop(

A2
top −A2

out

)1/2 . (7)
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If Atop � Aout, this is closely approximated by

v(t) ≈ [2 g h(t)]1/2 . (8)

Since the tank is draining slowly, equation (8) can also be derived from Bernoulli’s principle
for steady, potential flow:

z1 +
P1

ρg
+
v21
2 g

= z2 +
P2

ρg
+
v22
2 g
. (9)

At the top of the water in the tank we have z1 = h and v1 = R � v2, and at the tank
outlet (bottom) we have z2 = 0 and v2 = v(t). The top and outlet of the tank are both at
atmospheric pressure, so P1 = P2. Inserting these values into (9) results in (8). Combining
equations (1), (2), (3) and (8), we therefore find that

dh

dt
= R− (2 g h)1/2

(
Aout

Atop

)
= R− F (h), (10)

where F (h) = (2 g h)1/2 (Aout/Atop). This equation shows that if R > F (h), then dh/dt >
0, so h(t) will increase until F (h) = R and dh/dt = 0. This steady-state situation is
characterized by a water depth of

hf =
1

2 g

[
R

(
Atop

Aout

)]2
. (11)

For example, if R = 60 [mmph] (sustained), g = 9.81 [m s−2], rtop = 30 [m], and rout = 0.05
[m], we find that h increases asymptotically from h0 = 1 [m] to a steady-state value of
hf = 1.83486 [m].

Similarly, if R < F (h), then dh/dt < 0, and h(t) will decrease until F (h) = R and
dh/dt = 0. Here again, hf is given by (11). For example, if R = 40 [mmph] (sustained),
g = 9.81 [m s−2], rtop = 30 [m], and rout = 0.05 [m], we find that h decreases asymptotically
from h0 = 1 [m] to hf = 0.81549 [m].
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