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Abstract: The Object Modeling System (OMS) is a framework for environmental model 
development, data provisioning, testing, validation, and deployment. It provides a bridge 
for transferring technology from the research organization to the program delivery agency. 
The framework provides a consistent and efficient way to create science components, 
build, calibrate, and evaluate models and then modify and adjust them as the science 
advances, in addition to re-purposing models for emerging customer requirements. OMS 
was first released in 2004 and version 3.0 represents a major milestone towards an easier to 
use, more transparent and scalable implementation of an environmental modeling 
framework. OMS3 development is the result of an in-depth analysis of successful 
framework designs and software engineering principles as provided by general-purpose 
modeling frameworks. Like any modeling framework, OMS3 is enabling technology for 
modeling. The main goal of OMS3 development is an easier integration of model source 
code based on language annotations while being flexible to adopt existing legacy models. 
In OMS3, the internal complexity of the framework itself was reduced while allowing 
models to implicitly scale from multi-core desktops to clusters to clouds, without burdening 
the model developer with complex technical details.  
 
Keywords: Modeling framework; Software design; Component modeling; Noninvasive 
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1. INTRODUCTION 
 
Frameworks in general support efficient software development; environmental modeling 
frameworks (EMF) (Rizzoli et al, 2008) target modelers to help implement models that are 
state-of-the-art in science and software engineering, operate across domains, scale with 
problem complexity, and can be integrated with standard methods for calibration, 
optimization, and sensitivity/ uncertainty analysis. Using an EMF for model 
implementation has advantages not just for the model developer(s) - organizations not 
initially involved in the model creation process can benefit from EMFs as well.  EMF-
based models are more interoperable (since they typically adhere to some programming 
standard), can be coupled and integrated, and new model uses can be implemented more 
quickly. In addition, EMF-based models have an enforced structure that is provided by the 
framework so they can be better understood by developers outside of the initial 
development team. All the above benefits are available once a model is implemented using 
an EMF, or a legacy model is adapted to an EMF.  
 
An initial learning curve for EMF-based modeling always exists. Depending on the scope 
and comprehensiveness of the EMF, the modeler typically has to adopt programming 
techniques such as structured programming and modular decomposition (always a good 
practice), and be proficient in object-oriented programming or even architectural design 
patterns. If the framework targets high performance computing, a basic understanding is 
helpful towards dividing a complex problem in such a way that many CPUs can process 
models with measurable performance gain. The institutional support and acceptance of an 
EMF might help providing resource and in-kind support, but it is up to the modeler to 
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adopt an EMF in a way that is an integral part of the modeling workflow. Besides cultural 
and social barriers, there is also the technical challenge for the framework developer to 
lower the burden for successful framework adaptation by modelers. Web service or 
database framework projects outside the modeling community have demonstrated that 
model developers will adopt a framework if it is easy to approach, fits into an existing 
codebase and workflow seamlessly, and therefore does not fully invalidate existing 
practices of software development.  
 
OMS in its previous versions (2.x and earlier) represented the traditional framework 
development approach, i.e., building a framework supporting object-oriented or more 
specifically component-based modeling. It provided, like many EMFs, a core Application 
Programming Interface (API) that featured framework data types, base classes, support 
classes for time/space management, process management, data manipulation and I/O in a 
library that the model  used via inheritance, interface implementation, and plain calls.  
 
The evolution of the OMS3 framework design is very much related to the design of model 
components, and is also driven by usage experience: 
 
 OMS framework versions 1.x offered traditional library classes that a model or 

component had to either subclass or instantiate directly. The framework defined a 
limited set of data types that could be exchanged between model components. This 
was a simple approach, however, it limited modelers in their ability to use and share 
custom data types. For legacy code integration, this type of constraint is undesirable. 
Moreover, needed built-in flexibility for unit, type, and data transformation resulted in 
complex and large amounts of internal framework code. In addition, since model 
components had to be subclasses of the framework, blending into existing class 
hierarchies was impossible and a delegator/wrapper for existing components was 
always needed. 
 
/** Elevation. 
    @unit ft 
    @access read 
 **/ 
private OMSDouble elevation;          

 
 OMS 2.x simplified component design by allowing a model/component to use only 

interfaces instead of classes, i.e., no framework interface implementation was 
accessible from within the modeling component. As a result, the modeling component 
became more lightweight.  This “design-by-contract” implementation allowed OMS 
2.x to offer variants of framework data types with variable implementations for unit 
conversion, remote data access, data transformations, etc. while being fully transparent 
to the component. Switching to interfaces improved the overall quality and robustness 
of the framework and resulted in reduced API size. However, the data types being 
supported by the framework were still a fixed set: 

 
@Description(“Elevation”) 
private Attribute.Double elevation;          

 
For any OMS version prior to 3.0, framework data types for component data transfer 
objects had to be introduced in addition to the existing Java language counterparts. This 
represented a redundancy for types such as double and Double by providing an 
OMSDouble class implementation (OMS1.x) or an Attribute.Double (OMS2.x)  

 
OMS 3.x departs from the traditional API-based framework approach for component 
design in favor of a more lightweight, non-invasive implementation. Software developers 
in general and model developers specifically, are in favor of lightweight frameworks in 
contrast to heavyweight frameworks. Heavyweight frameworks, e.g. traditional object-
oriented frameworks, provide developers with an API that is often large and developers 
typically spend considerable time becoming familiar with framework APIs before writing 
model code.  In contrast, lightweight frameworks offer functionality to the developer using 
a variety of techniques aimed at reducing the API’s overall size and developer dependence 
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on the API.  Programming language annotations which capture metadata are used to 
identify specific points in the model code where framework functionality is integrated. The 
following section introduces the component design and layout in OMS3. 
 
2. MODELING COMPONENTS ARE PLAIN OBJECTS 
 
Like in other modeling frameworks, an OMS3 modeling component implements a domain 
specific simulation concept as software code. The term component refers to a concept in 
software engineering which extends the reusability of code from the source level to the 
binary executable. Components are context-independent, both in the conceptual and 
technical domain. They represent self-contained software units that are separated from the 
surrounding framework environment.  
 
OMS3 provides a radically simplified approach for model component design. It allows 
Plain Objects (Plain Old Java Objects) or POJOs that are annotated to be used within the 
framework. Annotated POJOs are easy to create since they are normal classes enriched 
with Java language level annotations. They provide the framework with hints to use the 
component as a model building block. Technologies that enable this type of framework 
design include: 

 Runtime introspection on object and class structure, fields, methods, and classes - for 
exploring the internals of a component and finding framework entry points for data 
flow and execution. 

 Language level annotations on classes, methods and fields – for describing dataflow 
fields and tagging IEF (Init/Execute/Finalize) methods. 

 Reflective access on object fields and reflective method invocation – for component-to-
component data transfer and indirect component method execution. 

 
Any language or platform that supports the above features, such as Java or C#, should be 
sufficient to implement this type of architecture.  
 
Listing 1 shows a simple component for lookup table computation in the OMS3/J2K-S 
watershed model (Ascough II et al., 2010). All annotations start with an (@) symbol. 
 
package climate; 
 
import oms3.annotations.*; 
import static oms3.annotations.Role.*; 
 
@Author 
    (name= "Peter Krause, Sven Kralisch") 
@Description 
    ("Calculates land use state variables") 
@Keywords 
    ("I/O") 
@SourceInfo 
    ("$HeadURL: http://svn.javaforge.com/svn/oms/branches/oms3.prj.ceap/src/ 
                   climate/CalcLanduseStateVars.java $") 
@VersionInfo 
    ("$Id: CalcLanduseStateVars.java 1050 2010-03-08 18:03:03Z ascough $") 
@License 
    ("http://www.gnu.org/licenses/gpl-2.0.html") 
@Status 
    (Status.TESTED) 
 
public class CalcLanduseStateVars { 
     
    @Description("Attribute Elevation") 
    @In public double elevation; 
 
    @Description("Array of state variables LAI ") 
    @In public double[] LAI; 
 
    @Description("effHeight") 
    @In public double[] effHeight; 
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    @Description("Leaf Area Index Array") 
    @Out public double[] LAIArray; 
 
    @Description("Effective Height Array") 
    @Out public double[] effHArray; 
     
    @Execute 
    public void compute() { 
        LAIArray = new double[366]; 
        effHArray = new double[366]; 
        for(int i = 0; i < 366; i++){ 
            LAIArray[i] = calcLAI(LAI, elevation, i+1); 
            effHArray[i] = calcEffHeight(effHeight, elevation, i+1); 
        } 
    } 
   // code for calcLAI and calcEffHeight 
} 
 
Listing 1. Component example in OMS3. 
 
Annotations have the following features in OMS3: 

 OMS3 package dependencies only exist for annotations (oms3.annotations.*). 
No API calls are needed (“Inversion of Control”). 

 Annotations exist to document the whole component; single fields have them as well 
for data flow specification and documentation. 

 A component adheres to the IEF cycle by tagging methods with the corresponding 
annotations. The computational method of this component is “tagged” with the 
@Execute annotation, the name of the method is not significant.  

 Data flow indications are provided by using @In and @Out annotations. 

 No explicit marshalling or un-marshalling of component variables is needed, i.e., an 
assignment is sufficient to pass them on to the receiving component. 

Annotations provide a more integrated and context safe way for adding modeling specific 
metadata to code such as units, ranges, etc. Since there is API support within the Java 
platform, they are easier to comprehend, manage, and process that other metadata 
representation, for example XML.  
 
Another core design aspect of components in OMS3 is the support of multithreading from 
the ground up. Since almost every new computer has multi-core processing, the inherent 
support of multiple execution threads via the modeling framework is required develop and 
deploy models which scale with processing resources. 
 
Even for simple model applications, each OMS3 component is executed in its own separate 
thread which is managed by the framework runtime. Thread communication happens 
through data flow from the @Out field of one component to the @In field of another 
component. The component will execute if all inputs are present and satisfied. This is 
accomplished by native language synchronization features using wait()/notify(). 
OMS3 internally only mediates data flow in a producer/consumer-like synchronization 
pattern, and also protects itself from dead-lock situations caused by an incorrect Out/In 
setup. This ultimately leads to implicit parallelism at the component level, i.e., no explicit 
knowledge of parallelization mechanics and threading patterns is required for a model 
developer.  
 
In addition to multi-threading, OMS3 also scales into cluster and cloud environments 
without any model recoding.  Being able to implicitly scale models was also one of the 
major OMS3 refactoring accomplishments. Using Distributed Shared Objects (DSO) in 
Terracotta, geospatial models can share core model data structures (e.g., a hydrologic 
response unit, HRU) and process them in parallel within a model. Studies are being 
conducted to revaluate scalability for different models, model data sets, and setups on 
multi-core, cluster, and most interestingly in cloud infrastructures.  
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3. SIMULATIONS AS DOMAIN SPECIFIC LANGUAGES  
 
OMS3 departs from the very GUI-centric design in version 2.2, by allowing more 
flexibility for integration into different development environments (IDEs) and general 
platform integration (e.g., JGrass and web-services stack). A flexible integration layer 
above the modeling components is provided by leveraging the power of a Domain Specific 
Language (DSL) for modeling and simulations. A DSL, in contrast to general purpose 
programming languages, is a programming language or specification language dedicated to 
a particular problem domain, a particular problem representation technique, and/or a 
particular solution technique. DSLs have the task of providing data (configuration or 
otherwise) to a program and let users write business rules for a particular task. This is 
usually motivated by the desire to allow coding without actually promoting it. OMS3 takes 
advantage of the builder design-pattern DSL, as provided by the Groovy programming 
language. This newly developed “Simulation DSL” allows the creation and configuration 
of simulations for OMS3; however, the Simulation DSL is not inherently bound to the 
framework.  
 
What is a simulation in the OMS3 context? A simulation defines all the resources that are 
needed to run a model for a given purpose. A basic simulation in OMM3 consists of: (i) the 
model and component executables, (ii) model-specific parameter and other (e.g., climate) 
input data in files or databases, (iii) some strategy for handling output, and (iv) a method to 
evaluate model performance with simple graphing/plotting or formal evaluation statistics. 
There might be additional information and resources required if the simulation includes 
parameter estimation, sensitivity analysis, or uncertainty analysis. 
 
Listing 2 shows a simulation using the Precipitation Runoff Modeling System (PRMS, 
Leavesley et al., 2006) Java-based model (PRMSHdJh) used for USDA-Natural Resource 
Conservation Service (NRCS) water supply forecasting in the western United States. The 
PRMS model has been set up for parameter estimation using the USGS Luca method. 
OMS3/luca is a multiple-objective, stepwise, automated procedure for model calibration 
that uses the Shuffled Complex Evolution global search algorithm to calibrate any OMS3-
based model in multiple rounds and calibration steps. As shown in Listing 2, in addition to 
the standard simulation elements such as outputstrategy, resource, model, output, 
parameter, etc., a Luca DSL simulation (executable within OMS3) defines additional 
elements for the calibration parameter, model parameter bounds for each step, or objective 
function type. Besides luca, there are other OMS3 DSL simulation types, such as fast 
(FAST sensitivity analysis), dds (Dynamic Dimensioned Search parameter estimation), or 
esp (Ensemble Streamflow Prediction).  
 
/* Luca calibration. 
 */ 
luca(name: "EFC-luca") { 
 
    // workspace directory 
    def work = System.getProperty("oms3.work"); 
 
    // define output strategy: output base dir and 
    // the strategy NUMBERED|SIMPLE|DATE 
    outputstrategy(dir: "$work/output", scheme:NUMBERED) 
 
    // for class loading: model location 
    resource "$work/dist/*.jar" 
 
    // define model 
    model(classname:"model.PrmsDdJh") { 
        // parameter 
        parameter (file:"$work/data/efc/params_lucatest.csv") { 
            inputFile  "$work/data/efc/data_lucatest.csv" 
            outFile    "out.csv" 
            sumFile    "basinsum.csv" 
            out        "summary.txt" 
 
            startTime "1980-10-01" 
            endTime   "1984-09-30" 
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        } 
    } 
 
    output(time:"date", vars:"basin_cfs,runoff[0]", 
             fformat="7.3f", file:"out1.csv") 
    calibration_start "1981-10-01"         // Calibration start date 
    rounds 2                               // calibration rounds, default 1 
 
    // step definitions 
    step(name:”Et param”) {                      
        parameter { 
            jh_coef(lower:0.001, upper:0.02, strategy:MEAN) 
        } 
        optimization( 
           simulated:"out1.csv|EFC-luca|basin_cfs",         
           observed:"$work/data/efc/data_lucatest.csv|obs|runoff[0]") { 
            of(method:ABSDIF, timestep:DAILY)    
        } 
    } 
 
    step(name:”soil param” {                     
        parameter { 
            ssrcoef_sq(lower:0.001, upper:0.4, strategy:MEAN) 
            soil2gw_max(lower:0.001, upper:0.4, strategy:MEAN) 
        } 
        optimization(simulated:"out1.csv|EFC-luca|basin_cfs",    
               observed:"$work/data/efc/data_lucatest.csv|obs|runoff[0]") { 
            of(method:ABSDIF, timestep:DAILY)  
        } 
    } 
} 
 
Listing 2. Luca DSL parameter estimation example in OMS3. 
 
Our experience in developing and working with simulation DSLs has shown that they are 
easy to adjust to new simulation types (e.g., parameter estimation or uncertainty analysis) 
and provide the model user with a high degree of freedom in setting up complex 
simulations (e.g., batch processing of multiple watersheds for stream flow or water quality 
prediction). DSLs look very much descriptive (and in fact they are), and can also contain 
any Java language statements. This type of behavior makes them very attractive for flexible 
integration of simulations and superior over “data-only” and static representations such as 
XML. 
 
4.  OMS3 MODEL APPLICATIONS  
 
Using OMS3, a number of science model implementations and applications are currently 
being tested and applied. All the models are open source and available on the OMS 
Javaforge project site (http://oms.javaforge.com). 
 
4.1. OMS3/J2K-S Watershed Model 
 
The OMS3/J2K-S watershed model is based on the European J2K-S model (Krause, 2002; 
Krause et al., 2006). OMS3/J2K-S (Ascough II et al., 2010) is a modular, spatially 
distributed hydrological system which implements hydrological processes as encapsulated 
process components. OMS3/J2K-S operates at various temporal and spatial aggregation 
levels throughout the watershed. For example, runoff is generated at the HRU level with 
subsequent calculation of runoff concentration processes (through a lateral routing scheme) 
and flood routing in the stream channel network. Research is currently being performed 
within the USDA-Agricultural Research (ARS) to develop, improve, and evaluate this 
model for selected watersheds within the Conservation Effects Assessment Program 
(CEAP) initiative. 
 
4.2 NRCS Water Supply Forecasting 
 
Seasonal water supply forecasts are an important function of the NRCS National Water and 
Climate center (NWCC). The forecasts are produced in cooperation with the National 
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Weather Service, are developed for hundreds of basins in the western United States, and 
are used by the agricultural community to optimize water use during the irrigation season. 
The NWCC has historically developed seasonal, regression-equation based forecasts of 
estimated seasonal stream flow volume. To address the agricultural community’s requests 
for more information on the volume and timing of water availability and to improve 
forecast accuracy, the NWCC is now developing the capability to use distributed-
parameter, physical process hydrologic models to provide forecasts of daily, weekly, as 
well as seasonal stream flow using an Ensemble Streamflow Prediction (ESP) 
methodology. The primary objective of this model-based forecast effort is the development 
and implementation of an OMS3 PRMS-based model family (and associated methods and 
tools) to enable the provision of timely, improved, and more frequently updated water 
supply forecasts.  
 
4.3. Conservation Delivery Streamlining Initiative (CDSI) 
 
USDA- NRCS field consultants currently use an array of analytical tools when providing 
technical assistance, including the Web Soil Survey, Revised Universal Soil Loss Equation, 
Wind Erosion Equation, Nutrition Balance Analyzer, Soil Quality Index, Pesticide 
Screening Tool, Phosphorus Index, Energy Estimators, Cost and Returns Estimator, among 
several others. They will increasingly use more comprehensive process-based modeling 
tools, such as the Agricultural Policy Extender (APEX) and the Agricultural Nonpoint 
Source (annAGNPS) models, or at least the technology contained within them, for on-farm 
system analysis. Unfortunately, each model comes with its own data provisioning 
requirements, unique user interface, and processing requirements. Currently, field 
consultants have hit a wall of complexity and resource constraints, and the existing tools 
are not used to their full potential (Carlson, 2010). 
 
To remedy this problem, the NRCS has initiated a Conservation Delivery Streamlining 
Initiative (CDSI) to integrate technology components with the workflows of the field 
consultant. CDSI will provide the framework and common user interface for the field 
consultant. The USDA-ARS is leading the development of models in OMS3 to integrate 
science components across multiple models and tools into various model bases, one of 
which will integrate with the CDSI framework. The purpose of the OMS-CDSI model base 
is to deliver science deployed as services available to the CDSI workflow. 
 
4.4 JGrass – Horton Machine and NewAge 
 
Recently, OMS3 was used as the modeling engine for JGrass through a collaboration effort 
between HydroloGIS, Colorado State University, and the University of Trento, Italy. 
JGrass is an open source front end for the Grass Geographic Information System. It is 
based on the uDig framework, which is maintained by HydroloGIS and CUDAM 
(University Centre for Advanced Studies on Hydrogeological Risk in Mountain Areas, 
University of Trento, Italy). Grass has a long history, emerging from a federal agency-
sponsored project into an open source project supported by a community of researchers, 
consultants and the Open Source Geospatial Foundation (OSGeo). The OMS3 runtime 
engine was brought into JGrass to provide for the execution of any OMS3 model within 
this environment. The core components of the Horton Machine, a hydro-geomorphological 
tool box, were implemented under OMS3.  Example Horton Machine components include 
a peak flow discharge model, watershed stream network delineation model, and an energy 
balance model. All components were integrated with core GIS processing through 
“Sprint”-like development sessions. The fact that data type handling for modeling 
components in OMS3 is open to Open Geospatial Consortium (OGC) types for raster and 
vector data allowed a straightforward and efficient implementation. In addition to the 
Horton Machine, the NewAge semi-distributed hydrological model was also ported into 
OMS3. NewAge consists of new conceptualizations where geographic features and 
modeling are mixed in an innovative way. Besides modeling the whole hydrological cycle, 
NewAge is also able to take into account human artifacts like reservoirs, intake and 
outtakes. 
 
5. CONCLUSION  
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OMS3 is a lightweight and non-invasive modeling framework for component-based model 
and simulation development on multiple platforms. The simplified structure for 
components allows rapid implementation of new models and an easier adaptation of 
existing models and components. Recent studies have shown that this type of approach 
leads to models with less overhead and a more intuitive design. By fully embracing 
language annotations for modeling metadata in favor of traditional APIs, OMS3-based 
models keep their identity outside of use within the modeling framework. Annotations also 
enable multi-purposing of components which is hard to accomplish with a traditional API 
design. In OMS3, annotations provide for component connectivity, data transformation, 
unit conversion, and automated documentation model generation (Docbook5+). Agencies 
such as USDA-NRCS use those annotations for creating traceable simulation audits based 
on secure hash algorithm (SHA 256).  
 
OMS3 also introduces implicit multithreading and an extensible and lightweight layer for 
simulation description that is expressed as a simulation DSL based on the Groovy 
framework. DSL elements are simple to define and use for basic model applications, or for 
more complex setups for calibration, sensitivity analysis, etc. This type of “programmable” 
configuration that eliminated core programming language “noise” turned out to be an 
extremely useful tool for current projects to support aspects such as automated, distributed 
setup of multiple batch models runs, integration into the open source GIS JGrass console, 
or IDE integration to name a few.  
 
Ongoing work with several modeling applications in OMS3 has shown the efficacy and 
efficiency of a non-invasive framework approach. The OMS3 development goal is to 
provide features to the modeler to make it easy to create contemporary, inter-operable, 
scalable and lightweight models that take full advantage of computing resources, data 
stores, and infrastructure opportunities while keeping things simple and intuitive. 
Additional information about OMS3 and associated models applications can be found on 
http://oms.javaforge.com. 
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