
International Environmental Modelling and Software Society (iEMSs)
2010 International Congress on Environmental Modelling and Software

Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada
David A. Swayne, Wanhong Yang, A. A. Voinov, A. Rizzoli, T. Filatova (Eds.)

http://www.iemss.org/iemss2010/index.php?n=Main.Proceedings

Environmental Modeling Framework
Invasiveness: Analysis and Implications

W. Lloyd a, O. David a, J.C. Ascough II b, K.W. Rojas c, J.R. Carlson c, G.H. Leavesley
a, P. Krause d, T.R. Green b, L.R. Ahuja b

a Dept. of Civil and Environmental Engineering and Dept. of Computer Science, Colorado
State University, Fort Collins, CO 80523 USA (e-mail address: odavid@colostate.edu)

b USDA-ARS, ASRU, 2150 Centre Ave., Bldg. D, Suite 200, Fort Collins, CO 80526 USA
c USDA-NRCS, 2150 Centre Ave., Bldg. A, Fort Collins, CO 80526 USA

d Department of Geography, Friedrich-Schiller-Universität Jena, Jena, Germany

Abstract: Environmental modeling frameworks support scientific model development by
providing an Application Programming Interface (API) which model developers use to
implement models. This paper presents results of an investigation on the framework
invasiveness of environmental modeling frameworks. Invasiveness is defined as the
quantity of dependencies between model code and the modeling framework. This research
investigates relationships between invasiveness and the quality of modeling code.
Additionally, we investigate the relationship between invasiveness and two common
framework designs (lightweight vs. heavyweight). Five metrics to measure framework
invasiveness were proposed and applied to measure invasiveness between model and
framework code of several implementations of Thornthwaite and the Precipitation-Runoff
Modeling System (PRMS), two hydrological models. Framework invasiveness
measurements were compared with existing software metrics including size (lines of
code), cyclomatic complexity, and object-oriented coupling with generally positive
correlations being found. We found that models with lower framework invasiveness
tended to be smaller, less complex, and have lower coupling. In addition, the lightweight
framework implementations of the Thornthwaite and PRMS models were less invasive
than the heavyweight framework model implementations. Our initial results suggest that
framework invasiveness is undesirable for model code quality and that lightweight
frameworks may help reduce invasiveness.

Keywords: Component-based modeling; Environmental modeling frameworks;
Invasiveness; Frameworks; Software metrics.

1. INTRODUCTION

Environmental modeling frameworks support model development through
provisioning of libraries of core modeling modules or components, component
interaction/communication, time/spatial stepping/iteration, up/downscaling of spatial data,
multi-threading/multiprocessor support, and cross language interoperability, as well as
reusable tools for data analysis and visualization. Environmental modeling frameworks
provide structure for models by supporting the disaggregation of modeling functions into
components, classes, or modules. In this paper, we refer to functional units of model code
as components. Components are able to be reused in other models coded to the same
framework with little migration effort. One advantage of using an established
environmental modeling framework is they often provide pre-existing libraries of
components to help facilitate model development (Voinov et al., 2004; Argent et al.,
2006). In this paper, we define the degree of dependency between an environmental
modeling framework and model code as “framework invasiveness.” This is the degree to

W. Lloyd et al./ Environmental Modeling Framework Invasiveness: Analysis and Implications

which model code is coupled to the underlying framework. Framework to application
invasiveness occurs from the following:

 Use of a framework Application Programming Interface (API) consisting of data types
and methods/functions which developers interface with to harness framework
functionality;

 Use of framework specific data structures (e.g., classes, types, constants);
 Implementation of framework interfaces and extension of framework classes;
 Boilerplate code (“non-science” code required for model to run under the framework);

and
 Framework requirements including language, platform, and libraries.

Framework to application invasiveness is a type of code coupling; object-oriented
coupling (i.e., coupling between classes in an object-oriented program) has been shown to
correlate inversely with software quality (Briand et al., 2000; Basil et al., 1996). One goal
of this research is to explore relationships between environmental model code quality and
the degree of invasiveness between model code and environmental modeling frameworks.
There are many dimensions to model code quality, often referred to as quality attributes.
Quality attributes that may be impacted by framework invasiveness include
understandability, maintainability, and portability/reusability.

Modeling frameworks can be classified as either heavyweight or lightweight
(Richardson, 2006). Framework type characteristics are described in Table 1. A primary
difference is how frameworks present functionality to the developer. Heavyweight
frameworks provide developers with a large application programming interface (API) and
developers typically spend considerable time becoming familiar with it before writing
model code. Lightweight frameworks provide functionality to developers using techniques
aimed at reducing the API’s overall size. Programming annotations capture metadata and
are used to identify points in the model code where framework functionality should be
integrated. Framework integration can also be accomplished using external XML files.
Wherever possible, “convention over configuration” is favored in that system defaults are
assumed and developers only specify unconventional details in model code. Non-default
behavior may include unique component data input/output requirements, pre-conditions,
post-conditions, etc. in model code. Framework specific data types which take the place
of system data types are avoided in lightweight framework designs. A second goal of this
research is to explore the relationship between the framework type (i.e., heavyweight vs.
lightweight) and the degree of framework to application invasiveness.

Table 1. Heavyweight versus lightweight framework design classification.

Heavyweight Frameworks Lightweight Frameworks

 Components under the framework:
 bound statically at compile time
 tightly coupled to the framework by

extension of framework classes,
implementation of framework interfaces,
use of framework data types, and use of
framework functions

 Provides specialized versions of native language
data types

 Have a “large” programming interface (API)
 Use may depend on many libraries

 Components under the framework:
 bound dynamically at run time by use of

language annotations/dependency injection
(inversion of control software design
pattern)

 loosely coupled and framework independent
 Convention over configuration: developers only

specify unconventional details in code as defaults
are assumed

 Uses native language data types
 Have a “small” programming interface (API)

The broad objectives of this research are to investigate the implications of framework

invasiveness on model code quality and to investigate the framework invasiveness
characteristics of both lightweight and heavyweight frameworks. Specifically, we seek to
answer the following research questions: 1) what is the impact of framework to model
code invasiveness on model code quality, and 2) do the design characteristics of
lightweight frameworks enable model development resulting in lower framework to model
code invasiveness? Previously, environmental modelers have developed models with only
a vague understanding of how the design of environmental modeling frameworks impact
modeling efforts. A better understanding of the phenomenon of framework to application

W. Lloyd et al./ Environmental Modeling Framework Invasiveness: Analysis and Implications

invasiveness can help modelers in choosing and designing modeling frameworks to
improve the quality of scientific models throughout their entire software life-cycles.

To investigate the above questions, we performed a case study using two
environmental models, a monthly water balance model (Thornthwaite) and a complex
watershed-scale model (the Precipitation Runoff Modeling System, PRMS). A set of
software metrics was devised and applied to quantify the invasiveness between the
framework and model code. Several traditional software quality metrics were used to
assess the quality of the environmental model implementations in terms of size,
complexity, and object-oriented coupling. An analysis of results was performed to
identify relationships between model code quality and invasiveness, and also between
framework type (e.g., heavyweight/lightweight) versus invasiveness.

2. ENVIRONMENTAL MODELING FRAMEWORKS

For this framework invasiveness study, the ESMF 3.1.1, CCA 0.6.6, OpenMI 1.4, and
OMS 2.2 and 3.0 environmental modeling frameworks were used to implement the
Thornthwaite (Thornthwaite, 1948) and PRMS (Leavesley et al., 2006) environmental
models. Additionally, three non-framework based implementations of Thornthwaite were
implemented in Java, C++, and FORTRAN to assist in developing framework-based
versions. ESMF is an open source framework developed by the National Center for
Atmospheric Research (NCAR) for building climate, numerical weather prediction, data
assimilation, and other Earth science software applications (Collins et al., 2005). CCA was
developed by the members of the Common Component Architecture Form, and is a
component architecture for high performance computing (Armstrong et al., 1999).
OpenMI is sponsored by the European Commission LIFE Environment program and is a
software component interface definition for developing models in the water domain (Blind
and Gregersen, 2005). OpenMI Thornthwaite model implementation in this study was
performed using a Java-based implementation of OpenMI, although a .NET/C# version
exists and is generally considered more popular. The Object Modeling System (OMS)
versions 2.2 and 3.0 are developed by the USDA – Agricultural Research Service (ARS)
in cooperation with Colorado State University. OMS facilitates component-oriented
simulation model development in Java, C/C++ and FORTRAN (David et al., 2002), and
version 2.2 provides an integrated development environment (IDE) with numerous tools
supporting data retrieval, GIS, graphical visualization, statistical analysis and model
calibration (Ahuja et al., 2005). The ESMF 3.1.1, CCA 0.6.6, OpenMI 1.4, and OMS 2.2
frameworks can be considered as heavyweight frameworks where modeling code is
coupled to the framework through dependencies on a framework's API, i.e., components
must use specific data types and functions to interface with the framework. OMS 3.0 has
been developed with a “non-invasive” lightweight framework design for model
development. That is, modeling components have been decoupled from the framework
API wherever possible so that they exist as plain classes implementing only model specific
logic. In addition, boilerplate code has been re-factored out using language annotations.

3. ENVIRONMENTAL MODELS

For this study, we investigated several implementations of Thornthwaite and the
Precipitation-Runoff Modeling System (PRMS) hydrological models. Thornthwaite is a
monthly water balance model which simulates water allocation among components of a
hydrological system (Thornthwaite, 1948). The model was selected since it has a typical
structure for a hydrological simulation model and its size and complexity were
manageable for this study. All model implementations were coded to produce identical
numeric output, programming language specific formatting functions were not used, and
only framework support for component aggregation and component
interaction/communication were utilized. The average code size of the framework based
Thornthwaite model implementations was 754 lines of code (LOC).

The Precipitation-Runoff Modeling System (PRMS) is a deterministic, distributed-
parameter model developed to evaluate the impact of various combinations of
precipitation, climate, and land use on stream flow, sediment yields, and general basin
hydrology (Leavesley et al., 2006). PRMS was implemented in Java using the OMS 2.2

W. Lloyd et al./ Environmental Modeling Framework Invasiveness: Analysis and Implications

and 3.0 frameworks as time and resources were lacking to implement the model under
additional frameworks. The PRMS implementations utilized framework support for
component aggregation, interaction and communication as well as model time stepping.
The average implementation size of the PRMS models studied was 13,580 LOC.

4. FRAMEWORK INVASIVENESS MEASURES

Research in object-oriented software evaluation has produced numerous metrics
which help to measure attributes such as the coupling, cohesion, and inheritance among
classes in an object-oriented program (Chidamber and Kemerer, 1994). However, the
existing metrics were not designed to specifically quantify the dependencies between
framework and modeling. The measures in the following sections were applied to quantify
invasiveness between environmental modeling frameworks and model code.

4.1. Framework Data Types (FDT) and Framework Functions (FF)

We quantify usage of two primary framework constructs in a model: framework data
types and framework functions. We count the total number of framework data types
(classes, data structures, types, etc.) used (FDT-used), and the total number of uses of
these framework data types in modeling code (FDT-uses). The total number of framework
functions (functions, methods, subroutines, etc.) used (FF-used), and the total number of
uses of these framework functions (calls) appearing in the modeling code (FF-uses) are
counted. Three variations of the framework metrics were calculated: a raw count, a count
of framework construct usage weighted per 1000 lines of code (KLOC) (e.g. FDT/FF-
used/-uses per KLOC), and the percentage of usage relative to all framework constructs
used/uses in the application code (e.g. % FDT/FF-used/-uses).

4.2. Framework Dependent Lines of Code (FDLOC)

To measure the invasiveness between model code and framework code, we counted
the total number of lines of code which depend on the framework. A framework
dependent line of code is defined as a line of code which depends on the framework such
that if the framework libraries were removed the line would not compile. This implies that
a framework dependent line of code contains at least one framework reference. In this
study, we calculated two variations of FDLOC: raw count and a percentage relative to the
total lines of model code (% FDLOC).

4.3 Software Quality Measures

As a surrogate for measuring model quality, we used three measures in this study: 1)
size, measured by counting lines of code (LOC); 2) complexity, measured by determining
cyclomatic complexity; and 3) coupling, measured using efferent coupling (fan-out), and
afferent coupling (fan-in). Cyclomatic complexity (CC) counts the number of linearly
independent paths through a program's source code. This is a surrogate for measuring
code complexity and has been a widely used in computer science. To measure coupling,
we used both efferent and afferent coupling measures because they can be collected on
programs in both procedural and object-oriented languages. Efferent coupling is the
number of classes which make reference to a class. This can be thought of as the number
of uses “outside” of the class. Afferent coupling is a dependency measure which counts
the number of classes referenced by a class. This can be thought of as the classes used
“inside” the class. Size, complexity and coupling measures generally inversely correlate
with code quality (Basil et al., 1996; Briand et al., 2000; and Briand et al., 1999).

5. RESULTS

Static analysis tools were used to support analysis of the model implementations.
SLOCCOUNT (SLOCcount, 2009) was used to count lines of code. Understand 2.0
Analyst (Understand, 2009) was used to collect the LOC, cyclomatic complexity, coupling
between objects (CBO), and fan-in/fan-out coupling software metrics. Function and data
type usage reports produced by Understand 2.0 were parsed using a custom program to
generate data for the FDT and FF usage measurements. FDLOC were determined
manually by counting lines of code.

W. Lloyd et al./ Environmental Modeling Framework Invasiveness: Analysis and Implications

5.1 Thornthwaite Model

The Thornthwaite model implementations were coded to provide identical output
given the same inputs to allow us to attribute differences observed between the
implementations to the invasiveness incurred from the different frameworks. Size and
complexity measurements of the Thornthwaite model framework implementations are
shown in Table 2.

Table 2. Thornthwaite model size and complexity metrics.

Language/
Framework

Total
LOC

Average
CC/method

Total
CC

FORTRAN only 244 3.33 40
OMS 3.0 Java 295 2.38 31

Java only 319 2.85 37
C++ only 405 2.41 41

OMS 2.2 Java 450 1.18 103
ESMF 3.1.1 C 583 1.97 65
ESMF 3.1.1
FORTRAN

683 1.44 56

OpenMI 1.4 Java 880 1.61 116
CCA 0.6.6 Java 1635 2.25 276

The OMS 3.0 framework was the only framework which enabled a smaller model (in

LOC) than the implementation in the equivalent native language, i.e., the OMS 3.0
Thornthwaite implementation was 295 LOC compared to 319 for Java-only. Ideally, a
framework-based model implementation should have a smaller code size than a plain-
language implementation with the reduced model code size reflecting code reuse where
some aspects of the model implementation are provided by framework code.

Coupling measures for the Thornthwaite model framework implementations are
shown in Table 3. For the Thornthwaite model framework implementations, measurements
for size, complexity and coupling were positively correlated. Total LOC and cyclomatic
complexity had a correlation coefficient of r = 0.94 (df = 4, p < 0.01), total LOC and total
fan-in had a correlation coefficient of r = 0.92 (df = 3, p < 0.05), and total cyclomatic
complexity with total fan-in had a correlation coefficient of r = 0.95 (df = 3, p < 0.02).

Table 3. Thornthwaite model coupling measures.

Language/Framework Total Fan-In (Afferent) Total Fan-Out (Efferent)
OMS 3.0 Java 116 70
OMS 2.2 Java 116 70
ESMF 3.1.1 C 100 155

ESMF 3.1.1 FORTRAN N/A N/A
OpenMI 1.4 Java 126 177
CCA 0.6.6 Java 195 215

Detailed invasiveness measurements for the Thornthwaite model framework

implementations are shown in Table 4. For the framework invasiveness measures, the
OMS 3.0 Thornthwaite model framework implementation appeared to be the least
invasive, i.e., this implementation had far fewer framework dependencies than others. The
Thornthwaite scientific code was essentially the same for all of the environmental
modeling framework implementations, with the observed differences resulting from
various framework-specific requirements to implement the model. The large variations in
the metrics suggest that variations in framework design likely impact the modeling code.
Table 4 also shows framework invasiveness metrics scaled to a percentage. The percentage
scaling shows how much of the overall percentage of an attribute is framework dependent.
Overall, a model implementation with low framework invasiveness should have a low
percentage of data type, functions, and LOC dependence on the underlying framework.

The final invasiveness measurement scaling shown in Table 5 is a scaling of attribute
occurrences per 1000 lines of code (KLOC), i.e., this scaling represents the expected
number of occurrences if there were 1000 lines of code. Since the model implementations

W. Lloyd et al./ Environmental Modeling Framework Invasiveness: Analysis and Implications

varied in size, this scaling provides a method for a side-by-side comparison. FDLOC,
FDT-used, FF-used correlated with model size (df = 4, p<.05); however, none of the
percentage or scaling invasiveness measures correlated with size. For complexity, three
invasiveness measures (FDLOC, FDT-used, and FF-used) were shown to correlate with
total cyclomatic complexity (df = 4, p<.05). A correlation existed between FF-used/KLOC
and average method cyclomatic complexity; however, correlation coefficients for other
measures with average CC/method seem almost random so it is possible the FF-
used/KLOC relation is spurious. Correlation coefficients between invasiveness and total
complexity were generally positive though they varied in magnitude. Total fan-in
(afferent) and fan-out (efferent) coupling correlated significantly with FDLOC, FDT-used,
and also %FF-used (fan-in only) (df=3, p < 0.05).

Table 4. Framework invasiveness detailed measurements.

Implementation FDLOC FDT-used FDT-uses FF-used FF-uses
OMS 3.0 Java 44 1 1 8 21
OMS 2.2 Java 147 5 72 7 33
ESMF 3.1.1 C 178 10 122 13 77

ESMF 3.1.1 FORTRAN 280 3 109 11 148
OpenMI 1.4 Java 338 8 73 20 280
CCA 0.6.6 Java 533 15 135 48 215

Implementation
FDLOC

(%)
FDT-used

(%)
FDT-uses (%) FF-used (%)

FF-uses
(%)

OMS 3.0 Java 14.84 4.67 1.35 26.67 40.38
OMS 2.2 Java 32.67 41.67 64.29 50.00 73.33
ESMF 3.1.1 C 30.85 30.30 49.59 46.43 76.24

ESMF 3.1.1 FORTRAN 41.42 27.27 51.90 78.57 96.10
OpenMI 1.4 Java 38.41 23.53 32.30 37.74 79.10
CCA 0.6.6 Java 32.60 46.88 49.82 70.59 69.58

Implementation
FDLOC/K

LOC
FDT-

used/KLOC
FDT-

uses/KLOC
FF-

used/KLOC
FF-

uses/KLOC
OMS 3.0 Java 148 3.39 3.39 27.12 71.19
OMS 2.2 Java 327 11.11 160.00 15.56 73.33
ESMF 3.1.1 C 309 17.15 209.26 22.30 132.08

ESMF 3.1.1 FORTRAN 414 4.39 159.59 16.11 216.69
OpenMI 1.4 Java 384 9.09 82.95 22.73 318.18
CCA 0.6.6 Java 326 9.17 82.57 29.36 131.50

5.2 PRMS Model

The invasiveness metrics were applied to evaluate the PRMS model implementations
under the OMS 2.2 and 3.0 frameworks. Size and complexity metrics are shown in Table
5. PRMS model code size was reduced 40% in the OMS 3.0 framework implementation.
Much of the size reduction can be attributed to the elimination of component getter and
setter methods. Getter and setter methods are accessor methods which intercept read/write
access to data variables in an object-oriented program. These constructs are encouraged to
provide data encapsulation to prevent unintentional changes to variables. The average
complexity per method increased significantly from OMS 2.2 to OMS 3.0. This is because
the total number of methods dropped significantly through elimination of the getter and
setter methods. A reduction in model complexity is reflected in the more than three-fold
reduction in total cyclomatic complexity observed in the OMS 3.0 PRMS model
implementation versus OMS 2.2 (Table 5).

Table 5. PRMS model size and complexity metrics.

Framework
Implementation

Total
LOC

Average
CC/method

Total
CC

OMS 3.0 Java 10163 9.75 702
OMS 2.2 Java 16997 1.37 2575

Table 6. PRMS model coupling measures.

Framework
Implementation

Total Fan-In
(Afferent)

Total Fan-Out
(Efferent)

Avg. Number
Methods/Class

OMS 3.0 Java 1232 755 3.6
OMS 2.2 Java 3517 1428 85.41

W. Lloyd et al./ Environmental Modeling Framework Invasiveness: Analysis and Implications

Coupling measures for the PRMS model implementations under the OMS 2.2 and
3.0 frameworks are shown in Table 6. Reductions in both total fan-out (efferent) and total
fan-in (afferent) coupling are observed in the OMS 3.0 PRMS implementation. Coupling
was likely reduced in relation to the reduction in code size attributed by removing getter
and setter methods. The average number of methods per component dropped from 85 to
3.6 in OMS 3.0. Framework invasiveness measures for the PRMS model implementations
are shown in Table 7. A significant reduction is seen in the use of framework data types
and functions in the OMS 3.0 lightweight framework implementation.

Table 7. PRMS model invasiveness measures.

Implementation FDT-used FDT-uses FF-used FF-uses

OMS 3.0 Java
OMS 2.2 Java

1
16

3
1788

5
15

7
2854

Implementation FDT-used (%) FDT-uses (%) FF-used (%) FF-uses (%)

OMS 3.0 Java
OMS 2.2 Java

5
50

0.19
65.9

5.5
19.2

2
91.8

Implementation
FDT-

used/KLOC
FDT-

uses/KLOC
FF-used/KLOC FF-uses/KLOC

OMS 3.0 Java
OMS 2.2 Java

0.09
0.94

0.29
105.2

0.49
0.88

0.69
167.9

6. DISCUSSION

To investigate relationships between model code quality and invasiveness, we used

the approach recommended by Briand et al. (1999, 2000) and Basil et al. (1996) to use
Chidamber and Kemerer’s (1994) object-oriented software metrics as indirect measures of
software quality. Using fan-in/fan-out coupling as an inverse surrogate of software quality,
we found that framework implementations for both models having the lowest invasiveness
measures for FDT-uses and FF-uses also had the lowest values for fan-in/fan-out coupling
(p = 0.002, 0.011; df = 5). Framework implementations for both models with higher fan-
in/fan-out coupling used more framework functions and data types. This relationship
suggests that more invasive model implementations may exhibit lower code quality. We
also found that model framework implementations with low invasiveness measures for
FDT-uses and FF-uses also had the smallest code sizes (LOC) (p = 0.024, 0.024, df = 5)
and total cyclomatic complexity (total CC) (p = 0.0007, 0.0007, df = 5). Models with
larger LOC and total CC also used more framework functions and data types. The results
indicate that framework-based model implementations which used the most framework
functions and data types had larger size, complexity and more coupling. These
relationships suggest a negative relationship between framework invasiveness and
software quality.

The Thornthwaite and PRMS model implementations under the lightweight OMS 3.0
framework had lower framework to model invasiveness (Tables 4 and 7). Additionally, the
Thornthwaite and PRMS model implementations under the OMS 3.0 framework had lower
overall code size (LOC), cyclomatic complexity, and afferent (fan-in) and efferent (fan-
out) coupling (Tables 3 and 6). It appears that a lightweight framework based modeling
approach produces both smaller and simpler model implementations.

7. SUMMARY AND CONCLUSIONS

This paper presents a unique comparison of environmental modeling framework
invasiveness using the Thornthwaite and PRMS hydrologic models. Our results showed
that less invasive model implementations tended to have higher code quality as observed
in terms of code size, complexity and coupling. Models implemented using the OMS 3.0
had the lowest invasiveness scores and the smallest size, complexity, and coupling. For the
Thornthwaite model, the OMS 3.0 implementation was on average 40% as large as the
heavyweight framework implementations and about 30% as complex. For the PRMS
model, the OMS 3.0 implementation was 40% smaller and about 30% as complex as the
heavyweight OMS 2.2 framework implementation. Overall, the OMS 3.0 framework
produced less invasive model implementations when compared to the heavyweight

W. Lloyd et al./ Environmental Modeling Framework Invasiveness: Analysis and Implications

framework implementations using OMS 2.2, ESMF 3.1.1, OpenMI 1.4, and CCA 0.6.6. In
conclusion, the lightweight framework approach to environmental modeling appears to
produce smaller, less complex models with less coupling and framework-to-model
invasiveness. Based on this result, a lightweight framework approach to environmental
modeling appears to help modelers develop higher quality and more concise model
implementations. For environmental modeling, this lightweight framework design
approach deems further attention.

ACKNOWLEDGMENTS

We would like to acknowledge Cecelia DeLuca from UCAR, a member of the ESMF
support team, who provided a code review of the ESMF FORTRAN Thornthwaite model
implementation and also Dr. Andrea Antonello who provided a code review of the
OpenMI 1.4 Java Thornthwaite implementation.

REFERENCES

Ahuja, L.R., Ascough II, J.C., and David, O., Developing natural resource modeling using
the object modeling system: feasibility and challenges. Advances in Geosciences, 4,
29-36, 2005.

Argent, R.M., Voinov, A., Maxwell, T., Cuddy, S.M., Rahman, J.M., Seaton, S., Vertessy,
R.A., and Braddock, R.D., Comparing modelling frameworks – A workshop
approach. Journal of Environmental Modelling & Software, 21 (7), 895-910, 2006.

Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker, S., and
Smolinski, B., Toward a common component architecture for high-performance
scientific computing. Proceedings of the 8th Intl. Symposium on High Performance
Distributed Computing, pp. 115-124, 1999.

Basil, V.R., Briand, L.C., and Melo, W.L., A validation of object-oriented design metrics
as quality indicators. IEEE Transactions on Software Engineering, 22 (10), 751-761,
1996.

Blind, M., and Gregersen, J.B., Towards an Open Modeling Interface (OpenMI) the
HamonET project. Advances in Geosciences, 4, 69-74, 2005. .

Briand, L. C., Wust, J., Daly, J., and Porter, D.V., Exploring the relationships between
design measures and software quality in object-oriented systems. Journal of Systems
& Software, 15 (3), 245-273, 2000.

Briand, L. C., Wiist, J., Ikonomovski, H. L., Investigating quality factors in object-oriented
designs: an industrial case study. Proceedings of the 21st International Conference on
Software Engineering (ICSE '99), pp. 345-354, 1999.

Chidamber, S.R., and Kemerer, C.F., A metrics suite for object oriented design.
Transaction on Software Engineering, 20 (6), 476-493, 1994.

Collins, N., G. Theurich, C. DeLuca, M. Suarez, A. Trayanov, V. Balaji, P. Li, W. Yang,
C. Hill, and A. da Silva, Design and Implementation of Components in the Earth
System Modeling Framework (ESMF). International Journal of High Performance
Computing Applications, Fall/Winter, 2005.

David, O., Markstrom, S.L., Rojas, K.W., Ahuja, L.R., and Schneider, W., The object
modeling system. In: Ahuja L.R., Ma. L., Howell T.A. (Eds.). Agricultural system
models in field research and technology transfer. Lewis Publishers, Boca Raton, FL,
USA, pp. 317-344, 2002.

Leavesley, G.H., Markstrom, S.L., and Viger, R.J., USGS Modular Modeling System
(MMS) - Precipitation-Runoff Modeling System (PRMS). In: Singh, V.P. and
Frevert, D.K. (Eds.), Watershed Models. CRC Press, Boca Raton, FL, pp. 159-177,
2006.

Richardson, C., Untangling Enterprise Java. ACM Queue 5 (4), 33-44, 2006.
SLOCCount, David A. Wheeler. Available at http://www.dwheeler.com/sloccount/

(accessed March 2010).
Thornthwaite, C.W., An approach toward a rational classification of climate.

Geographical Review, 38 (1), 55-94, 1948.
Understand – Source Code Analysis and Metrics, Scientific Toolworks, Inc. Available at

http://www.scitools.com/ (accessed March 2010).
Voinov, A., Fitz, C., Boumans, R., Costanza, R., Modular ecosystem modeling. Journal of

Environmental Modelling & Software, 19 (3), 285-304, 2004.

