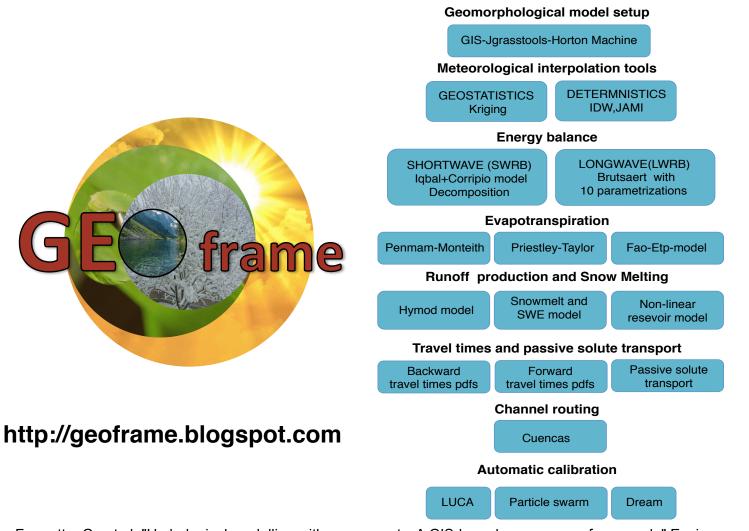
Hydrological modelling with JGrass-NewAGE system

<u>Wuletawu Abera</u> Giuseppe Formetta Marialaura Bancheri Riccardo Rigon

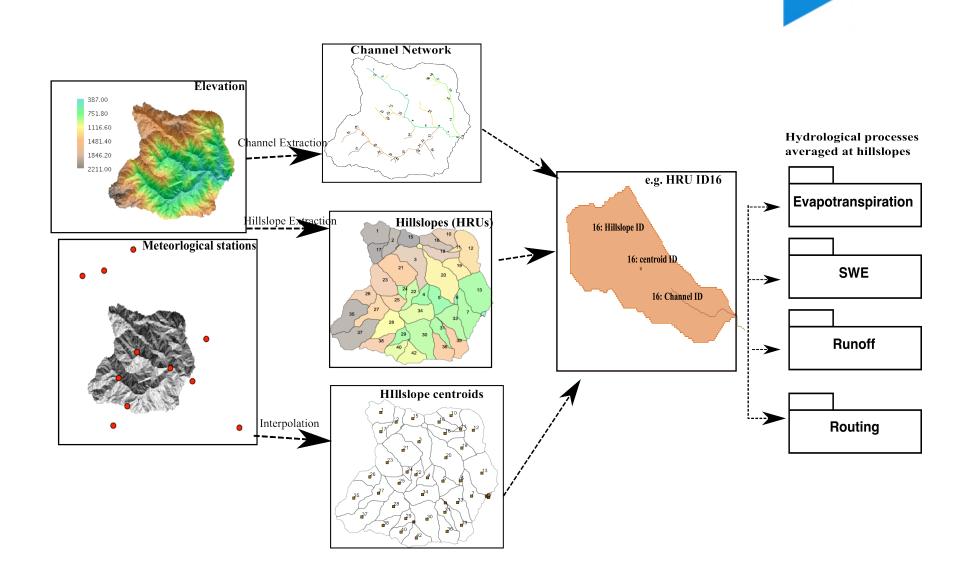
1. Theoretical

- I. JGrass-NewAGE briefly
- II. Sample component and OMS comp
- III. Application in UBN basin (case study)


2. Practical

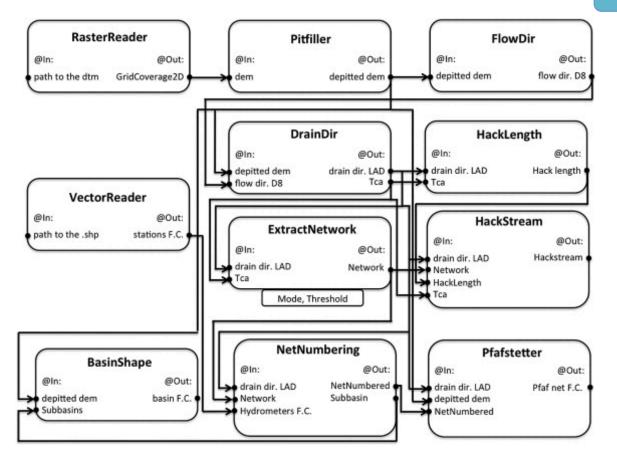
I. Digital watershed model

Please download oms project from https://drive.google.com/open?id=0B8taAom_i8q_NDhXZ2p3NXh3TzQ


II. SWR-LWR-ET connection

Please download oms project from https://drive.google.com/open?id=0B8taAom_i8q_WUEzLTNsYINVdHc

Formetta, G., et al. "Hydrological modelling with components: A GIS-based open-source framework." Environmental Modelling & Software 55 (2014)


All info you need: http://abouthydrology.blogspot.it/search/label/JGrass-NewAGE

Simplified working framework

Workflow.....

uDig-Jgrasstools-Horton Machine

Formetta, G., Antonello, A., Franceschi, S., David, O., and R., R.: The basin delineation and the built of a digital watershed model within the JGrass-NewAGE system, Bolet?n Geol?gico y Minero: Special Issue "Advanced GIS terrain analysis for geophysical applications, 2014a.

Wuletawu Abera, Andrea Antonello, Silvia Franceschi, Giuseppe Formetta, Riccardo Rigon.2014. Section 2.4.1: The uDig Spatial Toolbox for hydro-geomorphic analysis. In: Clarke, L. (Ed.) Geomorphological Techniques (Online Edition). British Society for Geomorphology; London, UK. ISSN: 2047-0371.

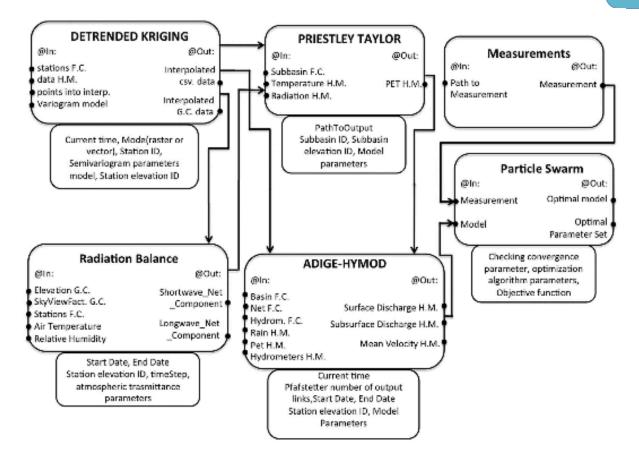
Components.....

uDig-Jgrasstools-Horton Machine

components { "rasterReader" "VectorReader" "subbsin_rasterWritter" "pitfiller" "flowdir" "DrainDir" "markoutlets" "extractnetwork" "wateroutlet" "pitcutout" "netnumbering" "networkattributes" "Basinshape" "RastCat" "VectorReshaper"

"\${GEARS}.io.rasterreader.OmsRasterReader" "\${GEARS}.io.shapefile.OmsShapefileFeatureReader" "\${GEARS}.io.rasterwriter.OmsRasterWriter" "\${HM}.demmanipulation.pitfiller.OmsPitfiller" "\${HM}.geomorphology.flow.OmsFlowDirections" "\${HM}.geomorphology.draindir.OmsDrainDir" "\${HM}.demmanipulation.markoutlets.OmsMarkoutlets" "\${HM}.network.extractnetwork.OmsExtractNetwork" "\${HM}.demmanipulation.wateroutlet.OmsWateroutlet" "\${GEARS}.modules.r.cutout.OmsCutOut" "\${HM}.network.netnumbering.OmsNetNumbering" "\${HM}.network.networkattributes.OmsNetworkAttributesBuilder" "\${HM}.basin.basinshape.BasinShape" "\${GEARS}.modules.v.rastercattofeatureattribute.OmsRasterCatToFeatureAttribute" "\${GEARS}.modules.v.vectorreshaper.OmsVectorReshaper"

"Writter_V_net" "Writter_V_basin" "\${GEARS}.io.shapefile.OmsShapefileFeatureWriter" "\${GEARS}.io.shapefile.OmsShapefileFeatureWriter"


Connection.....

uDig-Jgrasstools-Horton Machine

connect {	
"rasterReader.outRaster"	"pitfiller.inElev"
"pitfiller.outPit"	"flowdir.inPit"
"pitfiller.outPit"	"DrainDir.inPit"
"flowdir.outFlow"	"DrainDir.inFlow"
"DrainDir.outFlow"	"markoutlets.inFlow"
<pre>// extract the network raster map</pre>	
"DrainDir.outTca"	"extractnetwork.inTca"
<pre>//"extractnetwork.outNet"</pre>	"rasterWritter.inRaster"
<pre>// vectorize the network and various enumeration scheme</pre>	
"pitfiller.outPit"	"networkattributes.inDem"
"markoutlets.outFlow"	"networkattributes.inFlow"
"extractnetwork.outNet"	"networkattributes.inNet"
"DrainDir.outTca"	"networkattributes.inTca"
<pre>// "networkattributes.outNet"</pre>	"Writter_V_net.geodata"
<pre>// extract the raster subbasin map</pre>	
"DrainDir.outTca"	"netnumbering.inTca"
"markoutlets.outFlow"	"netnumbering.inFlow"
"extractnetwork.outNet"	"netnumbering.inNet"
<pre>// "VectorReader.geodata"</pre>	"netnumbering.inPoints"
"netnumbering.outBasins"	"subbsin_rasterWritter.inRaster"
<pre>// "netnumbering.outNetnum"</pre>	"rasterWritter.inRaster"

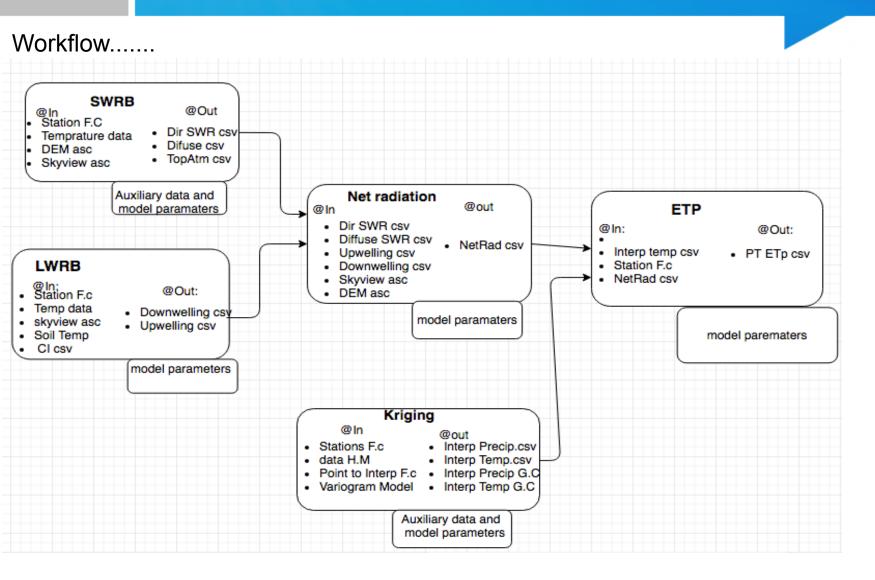
Workflow.....

Hymod model

Formetta, G., et al. "The JGrass-NewAge system for forecasting and managing the hydrological budgets at the basin scale: models of flow generation and propagation/routing." Geoscientific Model Development 4.4 (2011): 943-955

Energy balance

SHORTWAVE (SWRB) Iqbal+Corripio model Decomposition LONGWAVE(LWRB) Brutsaert with 10 parametrizations


Evapotranspiration

Priestley-Taylor

Formetta, G., et al. "Modeling shortwave solar radiation using the JGrass-NewAge system." Geoscientific Model Development 6.4 (2013): 915-928.

Formetta, G., et al.: Site specific parameterizations of longwave radiation, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/ hess-2016-227, in review, 2016

Abera, W., et al, Estimating water budgets components of Upper Blue Nile basin using remote sensing and NewAge-JGrass system, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-290, in review.

Component needed......

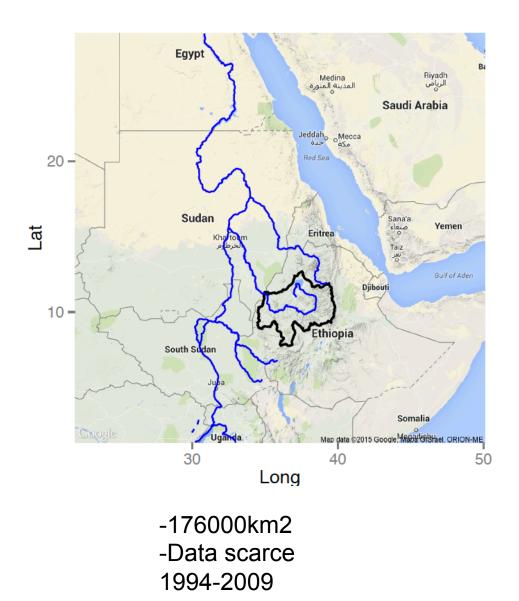
// model component

"swrb" "l" "PTEtp" "net"

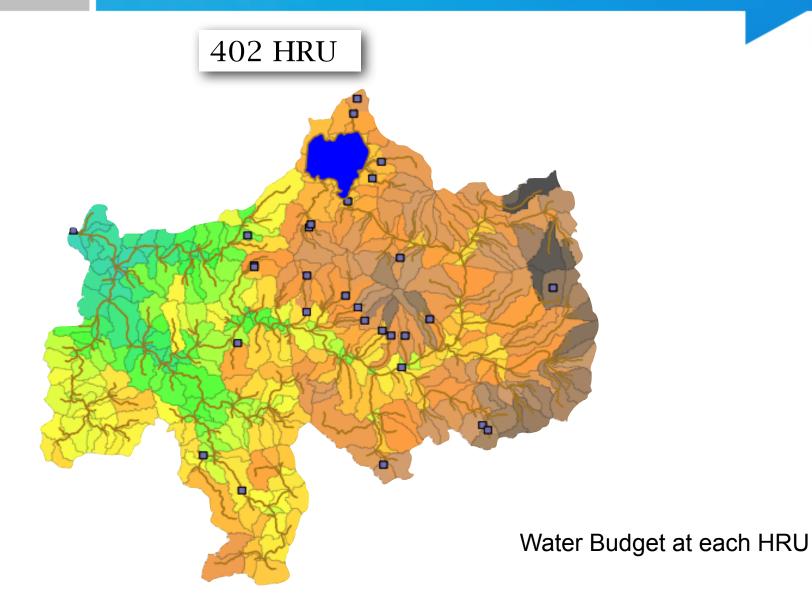
//writter component

"writer_direct" "writer_diffuse" "writer_topATM" "writer_down" "writer_up" "writer_etp" "writer_net"

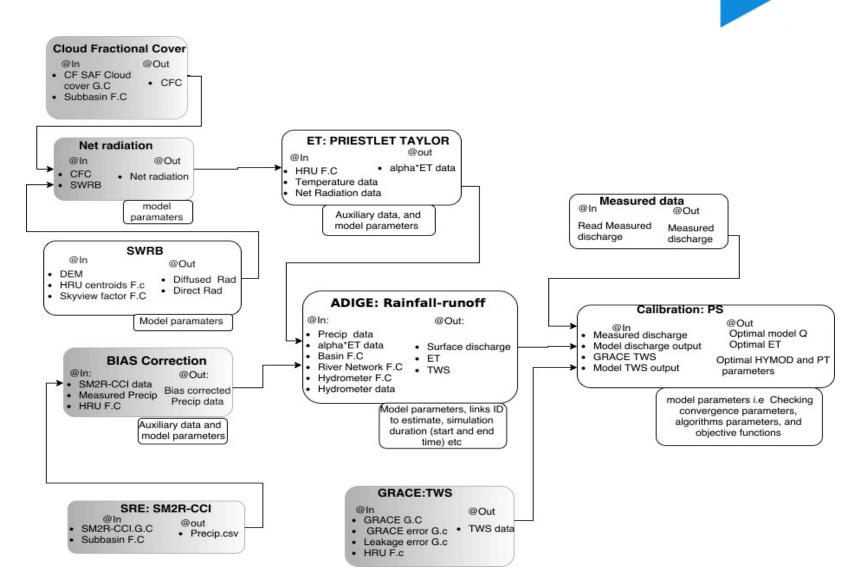
- "\${GEARS}.timedependent.OmsTimeSeriesIteratorReader"
- "\${GEARS}.rasterreader.OmsRasterReader"
- "\${GEARS}.rasterreader.OmsRasterReader"
- "\${GEARS}.shapefile.OmsShapefileFeatureReader"
- "\${GEARS}.timedependent.OmsTimeSeriesIteratorReader"
- "\${GEARS}.timedependent.OmsTimeSeriesIteratorReader"
- "\${GEARS}.timedependent.OmsTimeSeriesIteratorReader"


"swrbPointCase.ShortwaveRadiationBalancePointCase"
"lwrbPointCase.Lwrb"
"etp.OmsPriestleyTaylorEtpModel"
"netRadiation.NetRadiation"

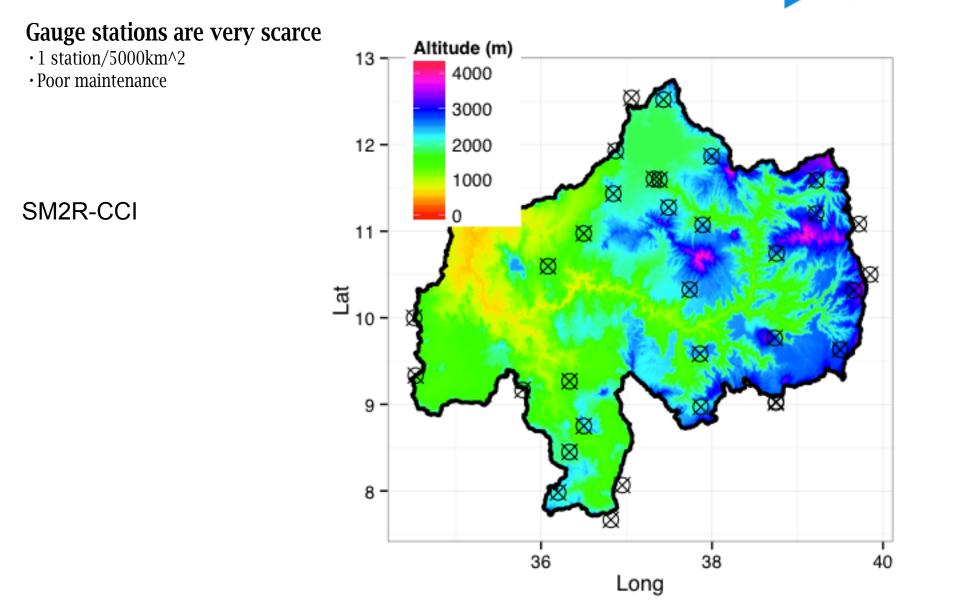
"\${GEARS}.timedependent.OmsTimeSeriesIteratorWriter"
"\${GEARS}.timedependent.OmsTimeSeriesIteratorWriter"
"\${GEARS}.timedependent.OmsTimeSeriesIteratorWriter"
"\${GEARS}.timedependent.OmsTimeSeriesIteratorWriter"
"\${GEARS}.timedependent.OmsTimeSeriesIteratorWriter"
"\${GEARS}.timedependent.OmsTimeSeriesIteratorWriter"
"\${GEARS}.timedependent.OmsTimeSeriesIteratorWriter"
"\${GEARS}.timedependent.OmsTimeSeriesIteratorWriter"


Connections......

connect { //connection SWRB "reader data temp.outData" "swrb.inTemperatureValues" "reader_dem.outRaster" "swrb.inDem" "reader sky.outRaster" "swrb.inSkyview" "vreader_station.geodata" "swrb.inStations" "swrb.outHMdirect" "writer direct.inData" "swrb.outHMdiffuse" "writer_diffuse.inData" "swrb.outHMtopatm" "writer topATM.inData" //connection lWRB "reader data temp.outData" "l.inAirTemperatureValues" "reader_data_soilT.outData" "l.inSoilTempratureValues" "reader data CI.outData" "l.inClearnessIndexValues" "reader sky.outRaster" "l.inSkyview" "vreader_station.geodata" "l.inStations" "l.outHMlongwaveDownwelling" "writer down.inData" "l.outHMlongwaveUpwelling" "writer_up.inData" // connection of swr and lwr with netradiation "swrb.outHMdirect" "net.inShortwaveDirectValues" "net.inShortwaveDiffuseValues" "swrb.outHMdiffuse" "l.outHMlongwaveDownwelling" "net.inDownwellingValues" "l.outHMlongwaveUpwelling" "net.inUpwellingValues" "net.outHMnetRad" "writer_net.inData" //connection ETP "reader data temp.outData" "PTEtp.inTemp" "net.outHMnetRad" "PTEtp.inNetradiation" "PTEtp.outPTEtp" "writer etp.inData"


Case Application: Large scale basin

HRU-channel partition

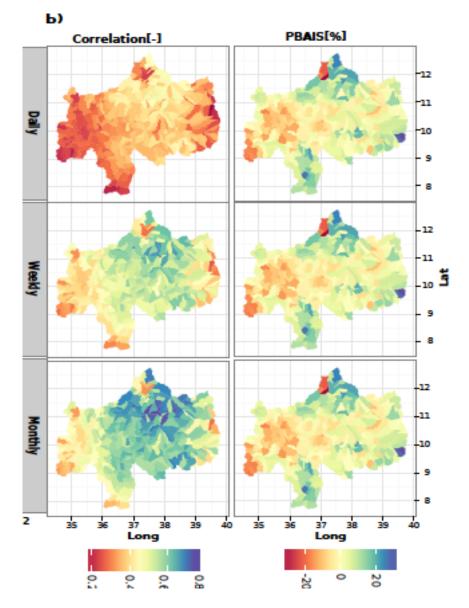


Working structure

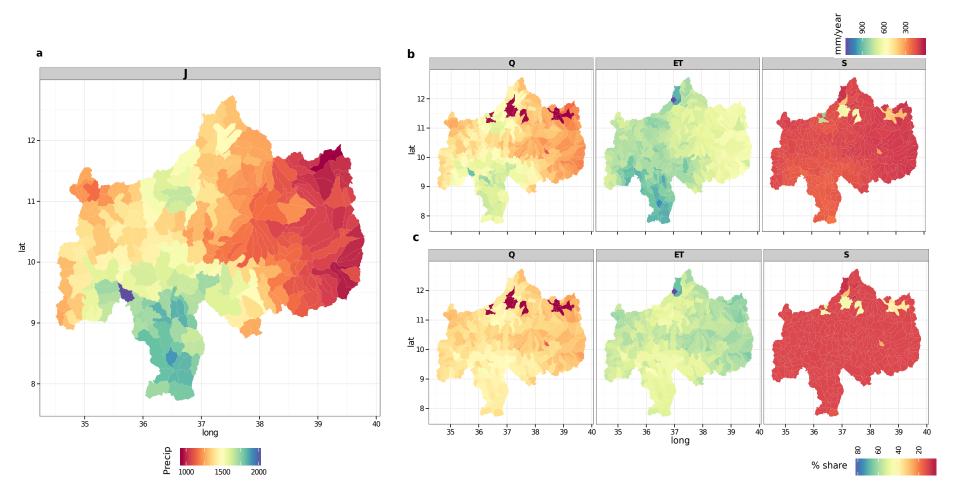
Abera, W., et al, Estimating water budgets components of Upper Blue Nile basin using remote sensing and NewAge-JGrass system, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-290, in review.

Spatial Precipitation

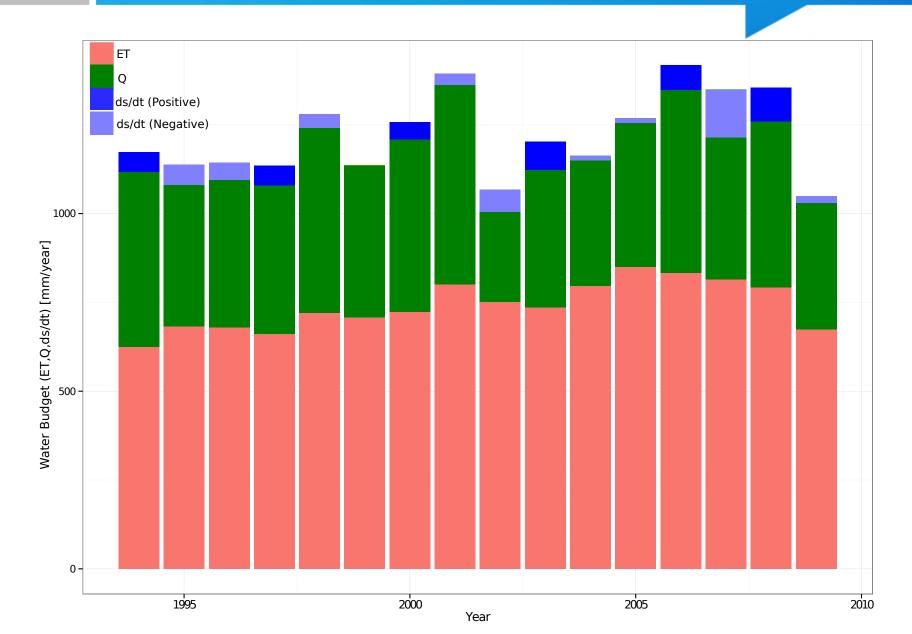
Evapotranspiration


Compare with GLEAM ET

a)


I subbasin 168 subbasin 120 subbasin 64 20-15 10 5-0-GLEAM ET NewAge ET 75-ET[mm] Weekdy 50-25-0-200 150 Monthly 100 50 0 1994 2002 1994 1996 1998 2000 2002 1998 2000 2002 1994 1996 1998 2000 1996

Evapotranspiration


GOF between NewAge and GLEAM ET

Spatial water budget

Basin average water budget

Thank you for your attention !