Object Modeling System v3.0

Developer and User Handbook
Olaf David
Jack R. Carlson
George H. Leavesley
James C. Ascough I
Frank W. Geter
Kenneth W. Rojas
Lajpat R. Ahuja

Object Modeling System v3.0: Developer and User Handbook
Olaf David

Jack R. Carlson

George H. Leavesley

James C. Ascough |1

Frank W. Geter

Kenneth W. Rojas

Lajpat R. Ahuja

Publication date Aug 10, 2010
Abstract

OMS s aframework for ago-environmental model development, data provisioning, testing, validation, and de-
ployment. It provides a bridge for transferring technology from the research organization to the program delivery
agency. The framework provides a consistent and efficient way to create science components, build models, cal-
ibrate and test them, modify and adjust as the science advances, and re-purpose for emerging customer require-
ments. OM S was first released in 2004, and subsequently integrated into the USDA Natural Resources Conserva-
tion Service technical architecture in 2008.

This Handbook targets the model developer, integrator, and user. It provides a comprehensive overview and ref-
erence about developing, integrating, running and deploying environmental simulation models using this frame-
work. It explains the steps required to create its fundamental building blocks, the components, and integrate them
into a more complex model. Model execution is demonstrated for testing, calibration, and uncertainty analysis,
illustrating the flexible options avail able once the model is within the framework.

With OM S 3.0, framework invasiveness to the model has been minimized, improving portability, adaptability and
infrastructure integration. The emphasis with this release was focused on (i) simplifying component integration,
(i) implicit auto-scaling of simulation modelsin multi-core and multi-processor environments, (iii) providing for
modeling simulation traceability and integrity, and (iv) auto-documentation of models and simulations.

An annotation standard was developed for those features. That standard promotes straightforward integration of
simulation code written in various programming languages with alow impact on the developer. The framework
was also designed with strong support for multi-threading, the concurrent processing of multiple simulation tasks.
The modeler and integrator does not have to know parallel programming knowledge is required to build paral-
lelized models. OM'S 3 enables seaml ess transitioning from multi-core modeling on a desktop to a clustered pro-
Cessors in acomputing cloud.

The framework addresses traceability requirements of agencies with program tracking and financial management
responsibilities. Agenciesrunning simulation model s can leverage OM Sto create auditable simulation trail s, based
on Secure Hash Algorithms, a Federal Information Processing (FIP) Standard. A related features is the capability
to auto-document a model and simulation structure into an open document standard such as Docbook5+.

In summary, the OM S framework supports awork flow to develop and deliver agro-environmental modelsto user
organizations with the following primary steps: (1) develop components, (2) integrate components into models,
(3) develop simulations, and (4) deploy and run simulations. The final step of running simulations is integrated
into the business work flow of the user organization.

19110 18 Tox 1 1o 1NN Vi

L. BBSIC CONCEPES ... eeeeeti ettt ettt ettt ettt ettt e ettt ettt e et ettt e e Vii
1.1. MOdE! COMPONENES ...eevteeeiite ettt ettt ettt e et et e et et e e et e bt reeeebt e e e eeneaeeees viii
1.1.1. Model COMPONENE BESEuiiiiiiiiei it iX

1.2, SIMUIBLIONS ...ttt ettt e et e et e e e e aa e e eaans iX

2. AUTIEINCE ... et X
3. OMS 3.0 FEELUIE SUMIMEIYietueitieieti ettt ettt ettt e et et e et et e e et e e e neeaa e eens Xi
4. "Hello Modeler" - A first @XampPleouiiiiii e Xii
4.1. A First Model COMPONENTceeueieeiit ettt e et eeeaa s Xii

A2, A FIrst SIMUIBLION ..ottt e e Xiii

1. INSLAllEtiON @NA SEIUPceeeeee ettt ettt e e ettt et e et e et eeeat e aee 1
1. REQUITEH SOFIWEIE ...ttt et ettt ettt et et e e e e e e enees 1
2. Install and SEtUP OMS3oeiiii ettt ettt e 1
2.1 MOOEING CONSOIE ...ttt ettt e et eeeaa s 1

2.2. Integrated Development Environments (IDE)oviiiiiiiiiiiiiiiei e 2

2.3. Command Line INterface (CLIY ...coouuniiiiiiei et 2

S REFEIENCES ...t 2
2. DevElOpIiNg COMPONENESceutueeeett ettt e ettt e e ettt et e eb e e ettt e e ettt e e et et e e et et e e e e et e e e e st e eeeranes 4
1. Example: Developing Components for a Monthly Water Balance Modelcooviiiiiiiiiniciinnnen. 6
2. Developing @ PET Java COMPONENTueiiiiieeiiii e ettt e et e et e et e e e e et eeeeete e e e eenaaaeeees 7
3. A FORTRAN PET COMPONENLceuuiietieitieeitiietii et e e et e e e e e e et e e e e ere e eaneeaneees 15
4. A C PET COMPOMNENE ..cetuietieetieeetii et et e et et e et et e e et et et e e e e et e retat e e et e e enneeaa e eraees 17
5. Component Method ANNOLELIONiiiiittee it e et e e et e e enia e eens 18
5.1. Conditional TNItialiZatioNoooeiitnieii e 19

B, REFEIEINCES ...t e 20
3. COMPONENE INEEGIELION ...cevtneeeit ettt ettt e et e et et e e et et e e e e et e e e e aaa s 21
1. CompPONENt VS, MOottt 21
2. Compound JaVa COMPONENES ... eeeettneeeett ettt e et e ettt e et et e et et aeeeebt e e e eebe e e eeenaaeeeees 21
2.1. ConNECtiNg COMPONENESvuueeeiti e eetti ettt ettt e e et e et et e et eeb e e e eee e e e enaa e e eenans 21

2.2. Input @nd OULPUL MEDIPING ... eeerteeeeeti et et e et e et eate e e eab et eaa e e e enn e e e eeaa e eenanns 21

3. TEMPOTEl TTEIEIIONSeeeiti ettt ettt ettt e e et e e e et e e e eet e e e eebn e eeees 22
A, SPALTEI TTEIAHIONS ...ttt ettt 22
S T 41V = o] PP SUPPPT 23
1. Data INPUL/OULPUL FOMMIBE ...ttt e et e e et eeeeaa s 23
L1 KEYWOIAS ...ttt ettt ettt ettt e et et e e et eeeba s 23

1.2, MEEA TBIA ... ettt et et et e eee 24

L3 PrOPEITIES ..ottt et e e e e e e e aae 24
1.3.1. Property Key/Value SUDSHTULIONoooeveiiiiiiiiecii e 25

O I o = SO ST PTPUPUPPPTTRPPPPPIN 25

1.5. USING the DAAlO APl ... 26

2. Concepts and ComMON ELEMENEScoouuuiiiiii e e 26
2.1 SIMBUITAES <.ttt e e 26

2.2, MOE (IMDET) ettt et e e e ettt e e e e e aa s 28
2.2.1. Parameter (DAr @Bt) ...eeeeueueeeeitn i eeeert e e eett e e eeai e e e est e e e eat e e eent e eeeneaaaees 28

2.2.2. RESOUICES (I @SOUI CE) tevvtueteetinetettin e testi e e eati et eat e et e et e e e e tb e e e e b e e e eaanas 29

2.2.3. LOGGING (1 OGGT NMG) +tnetentnnetenti ettt e et e et e et e et e et et e e e et eeeaba s 30

2.3. Simulation Output Strategy (OUL PUL SET AL BGY) «rrnreeerrrnreererrieeeeriiieeeeriieeeerinreeeennnaaeens 32

2.4. Model EffiCIenCiES (Ef fi Ci BNCY) eeiirtnieeiiiii ettt ettt e 33

2.5. SUMMEATY OULPUL (SUITITEII Y) +eevtneeeetii e e ettt e et e et e et e e et e et et e e et ab e e e eana s 35

2.6. DYNaMIiC OULPUL (OULPUL) «....eeeiiieeeeti ettt ettt et e et e e e e e s 37

2.7, ANBIYSIS (BN YST S) terrtnetiiti ettt ettt ettt ettt eaaas 38
2.7.1. Referencing datal SELScoeeviieiiiii e 39

2.7.2. THIME SEITES L.ttt et ettt e et e e e e 40

2.7.3. FIOW DUFBLION ...ttt ettt et e e et e e e e s 41

274, SCAIEEY ..ot 43

2.7.5. Computed Ad-hOC graphsoeiiiiiii e 44

3. BESIC SIMUIBLION (ST 1) +ttnetiitti ettt ettt ettt ettt ettt et et e et et e e e et e e e nb e e ennans 45
4. Ensemble Streamflow Prediction (ESP) - .cceevueeierinieiiii e 46

Object Modeling System v3.0

A1 ESP Trate ANBIYSIS ...euiiiiie ettt 47

A2, REFEIEINCES ...ttt 49

5. LUCA CAlIDIatioN (I UCA) wevuneeeeete ettt ettt ettt ettt et e et e e et e e e e et e e e enta e eeenes 49
5.1. Shuffled Complex EVOIULION (SCE)cccuuuniiiiiiiiieieiii et 49

5.2, REFEIEICES ... it 52

6. Automated Model and Component TESHING (E €ST) «evuuueieruuieieiii et 53
5. The MOAEliNG CONSOIE ...ttt e et e e e 54
1. OMS3 ProjECt WOIKSPACEeevtieeeeiie ettt ettt ettt ettt ettt et e e e b e e enees 56
1.1. Workspace configuration file 'oms3. conf'iiiiiiiiiiii e 57

2. Pal@mEEr EQITOen ittt ettt ettt eee 57
2.1. Parameter Editor CONSOIEuuiiiiiiieeiiii ettt ettt et e e e e e e e eees 58

3. ANBIYSIS OULPUL ...ttt ettt ettt e et ab e ettt e et et b e e e enb e e eenans 58
6. AGVANCEd TECHNIGUES ittt ettt e et e e et e e e e ata e e e eata e aeee 60
1. Simulation Traceability and AUIt SUPPOITcoieiiieiiiii e 60
L1 REFEIEINCES ..ottt 61

2. Digitally SIgNiNg MOGEIScouuniiiiiiee et 61
2.1. Creating a self Signed CartifiCateuuiiiiiii e 61

2.2. Importing an iSsued CEItifiCaEveiieii e 62

2.3. Vdlidating the Integrity of & SIMUIBLIONccoouuiiiiiiic e 62

3. DocuUmMENting SIMUIBLIONSoiiiiieieii et e et e eenaens 63
4. Native Language INteroperabilityooeeeiiiio e 65
4.1, FORTRAN 90/95 ..ottt ettt e et e e 65
411, GENETAl SELUD . evtneeeiie ettt et 65

4.1.2. Scalar Arguments DY ValUEcooiuuiiiiiiiii e 66

4.1.3. Scalar Arguments by RefErenCe.ooovvviiiiiii 66

404, AITay ATQUIMENESoiiie ettt ettt e e et e e e e e e e e eae e eees 67

4.1.5. SHING ATGUMENTS ..ottt ettt ettt ettt ettt e et e e e e et e e eaa e eenanns 68

A.16. MOQUIES ...ttt et 68

4.0.7. TYPE AFQUMENES ..ottt ettt ettt et et e e e et e e e eee s 69

4.1.8. Pitfalls and ODSIACIESceuniiiiii e 70

4.1.9. Data TYPE MaDPING ... eeeetieeeeti ettt e e e et e et e e ettt e e eat e e e eaia e eeenes 70

4.1.10. DLL GENEFALION ..ottt ettt e e e e enenns 70

N O @ TR SUPPPURPRT 71
4.2.1. Dynamic Link Library Generationccoeuuieeiiiiiiieiiiieeeei e 71

A3, REFEIEINCES ...ttt ettt 71

5. EMBEAAING OMS ...t 71
AL GHOSSANY .ttt 73
B. ANNOLAliON REFEIENCEo ittt et e e e e a e e enaas 74
L. ANNOLELION TYPES ...eeetieeeiti ettt ettt ettt e e et e et et e e et eb e e et et e e e e et e e e enba s 74
00 (2 == o o1 o P 75

1.2, @DOCUMENTAIIONeuitetit ettt et e et et e et e et e et e e e e e e e e e e e e e s eeneanaenns 75

O T (2 AN 11 0o 76

R (3 7 (U PR 76

ST G A= = o) 1 o) {0 P 77

ST (@) o 10 | (/= 1 T 77

N (21 =AY o SR 77

S T (0 I = 0= T 78

L9, @LADE ..o 78

O 1) 1 I TP PP UPPPTTRUPPPNt 78

0 O (21 U | PSPPI 79

O R (2 = = PR 79

L3, @ROIE ..o e 79

L2, @UNIT et e e 80

O ST ()] = 018 Vo [80

N @) (=, | (= TP 81

O A o g T (= L= 81

LLA8. @FINAIIZE ..oenieiii e 81

LU0, @DLL ittt e e e eee 82

Object Modeling System v3.0

2. Meta Data REPIESENTAIION ... cceevtieeeiit ettt ettt ettt e e e e et e e e 82

2.1. Embedded ANNOLELIONSuuiiiiteeeeiii ettt ettt ettt e e e e e e eaaans 82

2.2. Attached ANNOLELIONSiiiiii e 83

2.3, AACHEA XML oo 84

C. RECOMMENAE PraCliCES ... eiiiii ettt ettt e e et e et et e e et et e e e enta e aeees 85
1. FORTRAN CodiNg CONVENTIONSciiettieiiiiiiee ettt ettt e et e e e e e ena s 85

1.1. General GOOU PraCliCeS iieueiiieiiii ettt ettt e e 85

1.2. Interoperability and POrtabilityccoouuiiiiiiiii e 85

1.3, REAADITTY ..eeeeie et 86

L4, RODUSENESS ...ttt ettt ettt ettt e ettt e e et e bt e e e e et r e et eabnreeeenbnaeaees 87

S L 1 = Y PPN 88

1.6. Dynamic Memory AIIOCatioN / POINLENSoiiiiii i 88

R oo o 1o [o [PP PPT R PPPPTT 89

1.8, FUNCLIONS/PIOCEAUIESuiiiieii ettt ettt e e e e e e s 89

L0, 1O e 89

1.10. FORTRAN Features that are obsolescent and/or discouragedc.ovveeeeiinieiiiiinneeen. 90

121, SOUICE FlES ...ttt 90

1.12. General Coding GUITEIINESciiiiiieei e 91

TR I o= 01 PPN 92
g PP 95

Introduction

The Object Modeling System (OMYS) is an integrated environmental modeling framework. Frameworksin gener-
al are helping to create and use software applications by providing common and reoccurring functionality. Web
frameworks, user interface frameworks, or frameworksfor database integration are examplesfor successful frame-
work implementations within general software applications. They deal with complicated, mostly infrastructure
aspects by abstracting it to alevel that is appealing for the non-specialist.

What characterizes modeling frameworks? They are expected to support the modeling process, for example,
straightforward model code development, seamless model access to data, and data analysis and visualization.
Some modeling frameworks also focus on high performance computing and are specificaly tailored for particular
modeling domains such as climate modeling.

Driving forces for framework adoption within the modeling community are (1) saving time and reducing costs,
(2) providing quality assurance and control, (3) re-purposing model solutions for new business needs, (4) ensuring
consistency and traceability of model results, and (5) mastering computing scal ability to solve complex modeling
problems. At the bottom line the model developer should be able to efficiently develop and deliver a simulation
model. As pointed out in [Rizzoli2005], the modeler should experience an immediate return on investment by
adopting a framework designed to increase modeling productivity.

The Object Modeling System (OMS) is aintegrated modeling framework designed to support the delivery of sci-
ence relating to agricultural and natural resource management in programs administered by the U.S. Department
of Agriculture (USDA). The OMS architecture has been designed so that it can inter operate with other frame-
works supporting agro-environmental modeling in Europe, Australia, North America, and elsewhere. Its principle
architectureisshownin Figure 1, “OMS3 Principle Architecture”. It very much assembl esthe generic architecture
for environmental integrated modeling frameworks as described in [Rizzoli2008].

Figure1l. OMS3 Principle Architecture

Analysis

Model Audit
)
cosu ‘ ‘ Apps ‘ ‘ Trail ‘ Visual ‘ Docs ‘ Products
— Development
Models Simulations Tools
I OMS3 I
| Ontologies ‘ | Components H Meta data | Knowledsge
| Methodologies H Worlflows H Catalogs | Base

][. _— 1[— - j: Resources

‘ VvCs H DBMS H Services H Repositories

There are four foundationsidentified for OM S3 (Figure 1, “*OM S3 Principle Architecture”): modeling r esour ces,
the system knowledge base, development tools, and the modeling products. OM S3 core consists of an internal
knowledge base and devel opment tools for model and simulation creations. The system derivesinformation out of
various modeling resources, such as data bases, services, version control systems, or other repositories, transforms
it into aframework knowledge bases that the OM S3 devel opment tools use to create modeling products. Products
include model applications; simulations that support calibration, optimization, and parameter sensitivity analysis,
output analyses; audit trails, and documentation

Implementing this architecture may require a commitment to a structured model and simulation development
process, such as the use of a version control system for model source code management, or a simulation run

Vi

Introduction

database database to store audit trails. Such features are important for institutionalized implementation of the
framework, however, a single modeler may not be required to adhere to it.

1. Basic Concepts

There are afew simple conceptsto master in order to create and use modelsin OM S3. Like other modeling frame-
works such as OpenM|I [Gregersen2007], CCA [Bernhol dt2006], ESMF [Collins2005], and CMP [Moore2007],
OMS3 adheres to the notion of objects as the fundamental building blocks for a model and to the principles of
component based software engineering for the model development process.

Component-based software engineering (CBSE) has existed in one form or another for a number of years. The
advantages of constructing modular software are well known within the software community. Modularity is a
general concept which appliesto the development of software in afashion which allowsindividual modulesto be
developed, often with a standardized interface to allow modules to communicate. In fact, the kind of separation of
concer ns between objectsin an object-oriented language is much the same concept as for modules, but on alarger
scale. Typicaly, partitioning a system into modules helps minimize coupling, which should lead to 'easier-to-
maintain' code.

Initially, software components were viewed almost exclusively as source code modules. In recent years, however,
the popular use of the term software component has been with reference to so-called “binary” components. Binary
component are individual software artifacts that exist in compiled form, and are typically ready for distribution.
A wide variety of technologies have been developed to support the packaging of binary components.

OMS3 as a framework is object-oriented, the models within the framework are objects or components as under-
stood in CBSE. However the design of OMS3 is unique in one important aspect. It is considered non-invasive
and sees models and components as plain objects with meta data by means of annotations. Modelers do not have
to learn an extensive object-oriented Application Programming Interface (API), nor do they have to comprehend
complex design patterns. Instead OMS3 plain objects are perfect fits as modeling components as long as they
communicate the location of their (i) processing logic, and (ii) dataflow. Annotations do thisin a descriptive, non-
invasive way. Non-invasive lightweight frameworks principles based on plain objects have proven successful in
other application fields [Richardson2006] and are expected to pay dividends for agro-environmental modeling.

Why is anon-invasive approach important?

» Most agro-environmental modelers, at least early in the development life cycle, are natural resource scientists
with experience in programming (often self-taught), but not software architecture and design. Most modeling
projects do not have the luxury employing an experienced software engineer or computer scientist. Software
engineers understand and apply complex design patterns, UML diagrams, advanced object-oriented techniques
such as parameterized types, or higher level data structures and composition. A hydrologist or other natural
resource scientist usually lacks these skills.

Thetargeted use of object-oriented analysisand design principlesfor modeling could be productivefor aspecific
model having limited expectation for reuse and extensibility. However, for a framework, the extensive use of
object-oriented features for models is questionable since it puts an undesirable burden on the scientist.

* The agro-environmental modeling community maintains alarge number of legacy models. Some methods and
equations still in use were developed as long as 60 years ago. What has changed and will continue to changeis
the infrastructure around them that delivers the output from these models. Smart phones and computing clouds
are emerging technologies, to which lightweight, non-invasive frameworks can easily adapt.

» A lightweight framework adjusts to an existing design as opposed to define its own specification or API. The
learning curve small, as there is no complex API to learn or new data types to manage. This has some very
practical implications for amodeler, since thereisno major paradigm shift in using existing modeling code and
libraries. Committing to a non-invasive framework is more likely than for the more heavyweight counterparts,
since the component integrated in the lightweight framework can still have a'life' outside on other platforms,
and can keep evolving there.

Object-oriented techniques were promoted over the last decade to be the solution for natural resource modeling.
WEell designed object-oriented models are hard to design if the expected outcome is expected to contain al the

Vi

Introduction

promises of reuse, extensibility, and flexibility. Design of complex systems requires experience, anticipation of
future use cases, freedom to discard a dead-end design, and most of all: time and resources. In addition environ-
mental modeling perspectives, concepts, and approaches vary, which is hard to capture in a single object-oriented
design.

Since OMS3 is a hon-invasive modeling framework, the modeler does not need an extensive knowledge of ob-
ject-oriented principles to make the model-framework integration happen. Creating a modeling object is very
easy. There are no interfaces to implement, no classesto extend and polymorphic methods to overwrite, no frame-
work-specific data types to replace common native language data typeﬁ1 etc. Instead OMS3 uses meta data by
means of Annotations to specify and describe "points of interest” for existing data fields and methods for the
framework. Annotations are explained in detail in Appendix B. Chapters 2, 3, and 4 show their use within amod-
el. Within a modeling object any complex internal object-oriented design can be used as needed, however, the
framework does not depend on any object-oriented contract.

1.1. Model Components

Components are the main building blocks of simulation models in OMS. Traditionally, scientific applications
are designed as large blocks as hand-crafted code, which usually results in a monoalithic application. Such model
applications are not designed to have parts of them easily re-purposed if arelated application will be required in
the future. A major disadvantage of building monolithic simulation models is that conceptual boundaries within
the model are not captured or not there at al.

Inthishandbook werefer toaComponent asamodeling entity, that implements one conceptual modeling concept,
is implemented as a plain (Java) object that comes along with annotations. A component can be hierarchical, it
may contains other, finer grained components contributing to the larger goal. It is a black-box that exposes its
framework relevant aspects via meta data.

The component represents a sufficient level of complexity so that someone can use it in an executable simulation
iscalled aModel. Therefor each component can become amodel. The model is usually the top level component
within a component hierarchy.

Figure 2. Principle Component Structure

Execution phases {IRF)

.
Input data = Output data

=

Figure 2, “ Principle Component Structure” showsthe principle design of acomponent in OM S3. Likeall modeling
frameworks OM S3 provides for the same features: Isolating a computational aspect in a component, facilitating

4t was widely observed in framework implementation including OMS 2.x and before, that component interoperability can only achieved by
using framework supplied data types that usually are redundant equivalences to native language types. Such a requirement leads to even more
undesired coupling between the model and application and results in aframework lock-in.

viii

Introduction

directed dataflow (dots, or exchangeitems) and manage various execution phases of acomponent. As pointed out
in [Peckham2008], an "Initialize #Run #Finalize" (IRF) is acommon life cycle for amost al simulation models.
OMS3 offers only annotations to allow a user to specify those framework required aspects on top of plain object.

Theterm Component refersto aconcept in software devel opment which extends the re usability of code from the
source level to the executable. Components are software units that are context-independent both in the conceptual
and technical domain. A component is a self contained software unit that is well separated from its environment.

The component approach takes object-oriented designs to the next level. While object-oriented design methods
focus on abstraction, encapsulation, and localization of dataand methods, they can also lead to simulation systems
where objects are highly co-dependent. To remove this limitation, a more structured process was introduced in
model development and applied to OMS3: component-oriented modeling. It emphasizes the component as ob-
ject-oriented software which can be developed and tested independently, and delivered as a unit. It provides its
services through well defined interfaces.

Component implementations in general have proven to support reuse in a more efficient way than just using
object-oriented methods. There are some general benefits of using components for building complex systems.

» Components are designed with a standard, well defined interface in mind. Such a published interface hides
the implementation of the component logic and forces an abstraction level which separates the offered contract
for communication from its implementation.

» Components are self contained units from the conceptual and technical perspective. They can be developed
and tested individually. Finally they are packaged and are delivered to be used in several applications.

» The use of components simplifies the construction of complex systems since they change the way these are
built. As opposed to programming the entire model, it can be composed using components. Some parts of a
model may originate from legacy code sources, and some may be new code. A component approach facilitates
the integration of legacy and new code.

The use of components hel ps face the challenge building complex simulation models by reducing model software
complexity and overcome the limitations of monalithic, highly coupled model implementations.

1.1.1. Model Component Base

OMS3 also introduces the concept of a model base, considered to contain two or more instances of a model
designed to address the modeling needs of a customer. For example, the customer may require a model apply to
business scenarios across diverse regions. Therefore the solution could involve several instances of the model,
each modified, configured, and validated for a particular region.

Likewise, the customer may require a model be used in different contexts within a business function, and the
solution may involve model instances that fit into the various business work flows. Knowing these requirements
up front isimportant for architecting the model and deploying asinstances aligned with business needs. The model
instances should be managed as a model base. Model base components (including the model and its instances)
should be managed within an OM S3 modeling project and stored in the OM S3 Component Library.

1.2. Simulations

The other fundamental concept in OM S3 are Simulations. Simulations are giving amodel a purpose, they are the
model applications. Usually a simulation consists of the

Model that isto be used which isin most cases the top level component.
» Location and time sensitive input data such as parameter files or climate data sets
» Output management and analysis such as model efficiencies, statistical summaries, graphs, and plots.

» Type of execution, such as single execution, parameter sampling execution, an uncertainty analysis, or afore-
cast execution using synthetic input, etc.

» Execution environment such asthelocal computer, aremote box, or acluster of computer at aremotelocation.

Introduction

OMS3 definesaset of various simulation types that are discussed in Chapter ???. Figure 3, “ Principle Simulation”
shows the concept of a simulation.

Figure 3. Principle Simulation

T
| . w ~Comp /Q I i
‘ Comp-B l/ ———
Data Provisiening Maodel Execution (Type) Data cutput Analysis

How to create a simulation? OM S3 employs a simple but powerful concept called Domain Specific L anguage
(DSL) to provide for aconcise, robust, and flexible representation of simulations. A DSL in general isamini-lan-
guage aiming at representing constructs for a given domain. Our domain is modeling, therefore the vocabulary
of this DSL very much reflects modeling concepts.A DSL is really a language extension dealing with a design
pattern such as building a hierarchy of objectsin asimple, descriptive way.

With a DSL, simulations can be created and executed from different tools such as IDEs, the OMS3 modeling
console, the command line, or any application that embeds a OM S3 runtime.

The use of DSLs over other approaches such as XML for a structured setup of simulations and meta data has
many advantages. XML tends to be verbose when supported by a schema, parsing XML does not account for
programming languages data types, or conversions. DSLs instead offer an elegant and concise construction of
simulations while providing for implicit data types. The specification of the modeling DSL elements is part of
this handbook.

2. Audience

Modeling in general isacomplex process that refers to many activities such as data management, coding, output
analysis, etc. Thisdefinesthe type of usefor aframework such as OM S3. Scientist may devel oping an operational
model with a software engineer, atechnician is preparing datato be used in the simulation by changing its format,
atechnical service provider might perform model calibrations to obtain afitting parameter set, or a stakeholder is
using a canned model simulation to get some answers to a problem. Also, athird party company might want to
include the framework into their own application suite and needs to integrate it very low level.

OM S3 can support many of those common activities. The table below shows different kinds of audiences specific
in context to OM S as aframework supporting various modeling aspects. Other classifications exist [Rizzoli2008],
Good Modeling practice).

Table 1. Framework Audience

Frame- Description Expertise Activities Product Example
work User
System Integra- |integrates a mod- | IT Infrastruc- | Integrating the|e.g. aweb service|software engi-
tor el or modeling|ture architectures, |framework into|that employs the|neer, system inte-
framework into|system design,|large scale ap-|framework grator

Introduction

nent Developer

ware code

tions and compo-
nent integration
API

IDE and relat-
ed build/test and
version control
tools

nent executable

Frame- Description Expertise Activities Product Example
work User
a larger businessf OMS3 Frame-|plication using
application work integration|IDEs
API
Model Compo-|developing soft-|OMS3 Annota-|Coding using an|Model/compo- |Research scien-

tist, software en-
gineer, Domain
expert

Simulation De-

setting up a ssimu-

OMS simulation

Using simula

A runnable sim-

Research scien-

er

toget ananswer to
aproblem

the proper use of
asimulation with-
in a provided do-
main context

ulation with an
application and
selecting data
sets / parameter
to be used

answer to a prob-
lem

veloper lation for aspecif- | definitions, Mod-|tion definitions|ulation (e.g. cal-|tist, Technical
icuse el parameteriza-|for data provi-|ibrated parameter|Service Provider,
tion, dataformats, |sioning and set-|and data set) for
up, calibration,|a given area and
uncertainty anal- | problem.
ysis and opti-
mization
Simulation Us-|usingasimulation|knowledge about|Using the sim-|An quantitative| Consultant,

Farmer, Manager

The are most likely overlaps of activities, since aframework user is usually involved in many activities.

3. OMS 3.0 Feature Summary

This handbook describes the most recent incarnation of OMS version 3.0 (referred as OMS3). This version dif-
fers from previous versions in that the support for framework-based model development has widened in several
respects. The modifications and enhancements respond to experience from the user community.

What are the summarized features, improvements and characteristics of OMS3?

1. OMS modeling is component-based.

It aims for only minimal requirementsto call a plain Java object a OM S3 component. Existing legacy classes
are allowed to keep their identity, which means that once a component has been introduces into OMS3 it
is gtill usable outside of OMS3. OMS 3.0 is non-invasive. It minimizes the burden on a component/model
developer to build code into the framework by not imposing an API. There is admost no learning curve as
existing Java/Fortran/C/C++ code does not have to be changed. The modeler does not have to learn and use
framework datatypes, and does not have to comprehend communication patternsto parallelize the model. Most
if not all previous modeling frameworks have contained these intrusive features, and OMS 3.0 represents a
fundamental step to remove them.

. OMSisbased on the Java platform.

However it is inter operable with C,C++, and FORTRAN on all major operating systems and architectures.
Language interoperability. OMS 3.0 moves from a source centric Java Native Interface (JNI) strategy fo-
cused on FORTRAN toaDLL centric Java Native Access (JNA) integration that now supports all versions of
FORTRAN, C, and C++ on all major architecturesin 32 and 64 bit. FORTRAN and C/C++ programmers can
continue to use their respective tools to create components and then use one of the Java IDEs to annotate and
assemble componentsinto amodel, create simulations for testing and validation, and package model instances
for deployment.

3. Components always execute multi-threaded.

Xi

Introduction

The default execution is multi-threaded. Sequential execution isjust aspecific case of multi-threaded execution
where the data flow requires the sequential execution of components. If data flow allows it, components are
being executed in parallel. No explicit thread coding is needed to make this happen. OMS models are data
flow driven. The execution of components is driven by data flow dependencies. There is no explicit/manual
control of an execution sequence of components.

4, Simulations as defined as DSLs.

OMS 3.0 adds a new tool set for model calibration, sensitivity and uncertainty analysis (such as GLUE, SCE,
MOCOM, and others) to the package suite. A consistent user experience in simulations is provided also for
existing types such as Ensembl e Streamflow Prediction (ESP) and LUCA calibration.

5. Runtime flexibility for simulation execution

Models can now be executed in different environments that scale from a notebook to a computing cluster or
even acloud such as Amazon’s Elastic Computing Cloud (EC2).

6. Widerange of System Integration options and development flexibility.

OMS3 can be integrated into almost any infrastructure at different framework integration levels. Models can
now be developed with any Integrated Development Environment (IDE), that supports at least Java. The con-
straint to use the custom OMS IDE platform (with version 2.2) has been removed. Models can now be devel-
oped using all mgjor Java I DEs such as Netbeans, Eclipse, or IntelliJ.

How doesiscomparetoitspreviousversion OMS 2.2? It iseasier to integrate OM S3 into an existing devel opment
process, it scales into multi-core, multiprocessor environments, it makes model development easy by its non-
invasive nature. It lowers the burden for a modeler to take advantage of a modeling framework.

4. "Hello Modeler" - A first example

Let's create a very simple model that demonstrates all the basics involved with OMS3. It simulates nothing nu-
merically (we get to this later), it is rather the modeler’s variant of the usual "Hel | o Wor 1 d" example, which we
will call “Hello Modeler.” Later, the examples will become more comprehensive. This example shows the two
fundamental parts of modeling in OMS: Creating a

1. component and therefor a model and the executable code, and

2. asimulation, combining the model with input data sets and performing a simulation.

4.1. A First Model Component

For the Java modelers components are developed as Java classes (For FORTRAN and C/C++ modelers, Sec-
tion ?7??).

We create anew Javaclassnamed Conponent and saveit asConponent . j ava. The sourcefile needsto be compiled
with j avac using an IDE or just the command line compiler. Section ??? explains the details for setting up a
development environment and thecl asspat h. Now, we have created the model source code and have compiledit.

As seen here, acomponent is a piece of plain Java code that is annotated with OM S specific meta data. Meta data
annotations (shown in bold) are a very easy to add and turn plain objects into components to be used within the
modeling framework.

Xii

Introduction

Example 1. First Component (Component.java)

package hel | owor | d;

i mport ons3. annotati ons. *; /1 1.
/**
* First conponent
*/
public class Conponent {
@0l e(Rol e. PARAMETER) Il 2.
@n public String nessage; /1 3.
@xecut e Il 4.

public void run() {
System out . pri ntl n(message) ;
}
}

1. Adding the ons3. annot at i on package to the component associates it with the OM S frame-
work. This package defines OM S annotation types.

2. The @rol e annotation givesits following field declaration the 'Parameter’ identity.

3. The OMS ons3. annot at i ons package defined @ n annotation tags the field, that provides
input to the component, a message as a plain String in the case above. Note that the field
needs to be public like the class.

4. Theannotation @xecut e indicatesthe entry point for model execution. The run method now
gets called when OM S will execute the component. The method name isirrelevant here, the
annotation @xecut e pointsto it.

Therest of the classis plain Java code. The class has to be public as shown above.

4.2. A First Simulation

As anext step we need to create the simulation to parameterize and run the just created model. Create atext file
called hel | 0. si mwith the following content. We define al the resource elements for the simulation, which are
assembled in a hierarchical way.

Xiii

Introduction

Example 2. First Simulation (hello.sim)

si m(nane: "Hel | 0") { /1 1.
resource "$work/dist/*.jar" Il 2.
nodel (cl assnane: " hel | owor | d. Conponent ") { /1 3.
paraneter { Il 4.
nessage " Hello Modeler ..." Il 5.
}
}
}
1. Theelement si mdefinesasimple simulation that runsamodel inasinglerun. It hasthe name

The si melement is a part of the OMS3 DSL for modeling. This DSL provides a simple descriptive syntax for
constructing model applications for different model to calibrate parameters, evaluate uncertainty and parameter

'Hel 1 0" as shown. In curly brackets there are al the resources for this simulation.

. First, ther esour ce element listsall files, belonging to thissimulation, al j ar filesinthedist

folder in the work directory. The value of work might be passed as a system property. The
jar fileslisted here by wild card expansion will be put into the model's cl asspat h.

. The model resource element specifies the class that represents the top level compo-

nent. The class name is full qualified, it must include the package name. The class
hel I owor | d. Conponent was developed in the previous section.

. Themodel containsthepar amet er , which should be passed from the simul ation to the model

on startup. In out example the @ n field nessage getsthevalue" Hello Mbdeler ..." as
input. The name as listed here in this simulation must exactly match the name of the field
in the model.

sensitivity, run model ensemblesin a (cloud) cluster, or just simply execute.

With the simulation devel oped, we are ready to run the model. The OM S3 console providesthe easiest way to load
the simulation, execute it and look at the result. The following chapters and sections will discuss more options

to run asimulation.

Start the console by clicking the button asit provided at

http://ons. javaf orge. com

With the console running, open the file hel I 0. si m(you can aso use it to write and create it in the first place).

Note

Y ou need to have some recent Java 1.6 Runtime Environment installed to launch the
application. Download it from http://java.sun.com/javase/downl oads.

It shows as tab in the upper part of the screen.

Xiv

http://java.sun.com/javase/downloads

Introduction

Figure 4. Running the Simulation 'Greeting' using the OM S3 Console

4fy OMS3 Console Y= =
File Help

» | Working Directory: /od/projects/oms3.prj prms2008
efc.esp| efcluca efc.sim

2 © s L @ W Logging OFF w

fod/projects /ous3. pri. prasa00s,
msl absdif
0.68511 764330582

Loaded: /od/projects/oms3.prj.prms 2008/ simulation/efcarson/efc. sim

Now hit the Run button to execute the simulation. The expected output appears in the lower part of the screen.
Thestring 'Hel | o Model er ' is passed from the simulation to the model component and is printed out at the lower
part of the console.

Congratulations, the first model and simulation in OMS3 is implemented.

Bibliography

[Argent2004] Argent, R.M. An overview of model integration for environmental applications—components,
frameworks and semantics Environmental Modelling & Software, Volume 19, Issue 3, Pages 219-234,
Mar 2004

[Bernhol dt2006] Bernholdt D.E. and Allan B.A. and Armstrong R. and Bertrand F. and Chiu K. and Dahlgren T.L.
and Damevski K. and Ewasif W.R. and Epperly T.G.W and Govindaraju M. and Katz D.S. and Kohl J.A.
and Krishnan M. and Kumfert G. and Larson JW. and Lefantzi S. and Lewis M.J. and Maony A.D. and
Mclnnes L.C. and Nieplocha J. and Norris B. and Parker S.G. and Ray, J. Shende and S. Windus, T.L.
and Zhou, S. "A Component Architecture for High Performance Scientific Computing”, Journal of High
Performance Computing Applications, ACTS Collection Special 1ssue, May 2006

[Coallins2005] Coallins, N., G. Theurich, C. DelL.uca, M. Suarez, A. Trayanov, V. Basgji, P. Li, W. Yang, C. Hill,
and A. da Silva. Design and Implementation of Components in the Earth System Modeling Framework.
International Journal of High Performance Computing Applications, Volume 19, Number 3, pp. 341-350.
2005

[David2002] David O., S.L. Markstrom, K.W. Rojas, L.R. Ahujaand |.W. Schneider, The Object Modeling Sys-
tem. In: L.R. Ahuja, L. Maand T.A. Howell, Editors, Agricultural System Modelsin Field Research and
Technology Transfer, Lewis Publishers, Boca Raton (2002), pp. 317-330.

[Gregersen2007] Gregersen, J.B., Gijsbers, P.JA., and Westen, S.J.P., (2007). Open Modelling Interface. Journal
of Hydroinformatics, 9 (3), 175-191. 2007

[Moore2007] Moore, A.D., D.P. Holzworth, N.I. Herrmann, N.I. Huth, M.J. Robertson, The Common Modelling
Protocol: A hierarchical framework for simulation of agricultural and environmental systems. Agricul-
tural Systems, Volume 95, Issues 1-3, Dec 2007, Pages 37-43

[Peckham2008] Peckham, S: CSDMS Handbook of Concepts and Protocols: A Guide for Code Contributors,
http://csdms.col orado.edu/wiki/Help:Tools CSDMS_Handbook, 2008

XV

Introduction

[Richardson2006] Richardson, C: POJOs In Action. Manning Publications. Jan 2006

[Rizzoli2008] Rizzoli, A.E., Leavesley, G.H., Ascough I, J.C., Argent, R.M. Athanasiadis, I.N., Brilhante, V.C.,
Claeys, F.H., David, O., Donatelli, M., Gijsbers, P., Havlik, D., Kassahun, A., Krause, P., Quinn, N.W.,
Scholten, H., Sojda, R.S., and Villa, F. 2008. Chap. 7: Integrated modelling frameworksfor environmental
assessment and decision support. In: Environmental Modelling and Software and Decision Support —
Developments in Integrated Environmental Assessment (DIEA), Voal. 3, A.J. Jakeman, A.A. Voinov,
A.E. Rizzali, and S.H. Chen (Eds.), pp. 101-118. Elsevier, The Netherlands.

[Rizzoli2005] Rizzoli, A.E., Svensson, M.G.E., Rowe, E.C., Donatelli, M., Muetzelfeldt, R., van der Wal, T., van

Evert, F.K., Villa, F.:Modelling Framework (SeamFrame) regquirements. SEAMLESS report no. 6, Dec
2005

XVi

Chapter 1. Installation and Setup

OMS3 is based on the Java Platform, therefor it is usable in al major operating systems. Examples are Windows,
Linux, and MacOS, or OpenSolaris. Any environment supporting Java 1.6 can run OMS3. Different Javaversions
are available for 32 and 64 hit architectures and processor types. All of those Java versions are suitable to run
OMS3 and itsmodels. Please be aware that models using native systems componentsfrom aDLL or shared object
are not binary compatible across platforms, however pure Java models are.

1. Required Software

Download and install Java 1.6. The JDK 6 (Java SE Development Kit) is required for OM S3 model devel opment,
the Java 1.6 Runtime Environment is sufficient. To obtain latest JDK, download it from:

http://java. sun. con j avase/ downl oads

Follow the installation instructions for your operating system during installation. Make sure the commandsj ava
and j avac are accessiblein the PATH when using the command line interface.

2. Install and Setup OMS3

There are different options for installing OM S3 which are very much driven by its use case scenario. The OMS
Console alows to run en existing model, but does not support model development like an IDE. However an IDE
will give you the option to develop components by editing, compiling and packaging them.

2.1. Modeling Console

Install the JRE or JDK, launch the OMS3 Console

http://oms. j avaf or ge. com

Y ou can test the successful installation of all the packages by executing thislinein the OMS 3 Console;

Figure 1.1. Modeling Console

% OMS3 Console A=
File Help
sH O 89 | 4 0O Wark:| C: \pd \prejects\oms 3.pe) .examples

tgroavy™

oms3, SimBuilder.checkInstall ()
L

Java:l.6.0_14 Groovy:l.6.4 OM3:3.0 ...Correct Imstallacion.
Loaded: noname

Installation and Setup

The ons3. Si nBui | der class has the method checki nstal | () that verifies the presence and correct version of
required software such as Java. In the OMS3 Console, add the same command above and hit ¢t r I +R (Run).

2.2. Integrated Development Environments (IDE)

You may aso download a free Java IDE such as the Netbeans IDE, Eclipse or IntelliJ. Those IDEs might
also bundle Groovy language support out of the box (check the IDE, and download Groovy from http://
groovy.codehaus.org. Any environment that supports Java at least will do it.

For any IDE configuration, the OMS jar needs to be downloaded. It is available as a zip file, containing the oms
library (oms3-al | . j ar), the sources and the APl documentation .

Download the OMS3 distribution file ons- 3. x. zi p

http://oms. j avaf or ge. com downl oads/ ons3

To use OMS, you need to add the file ons3. x-al | . j ar to your IDES CLASSPATH. There are different waysto do
this depending on the development tool you are using. Please follow the IDE instructions on how to add external
libraries to a development project.

2.3. Command Line Interface (CLI)

The OMS3 command line interface allows the execution of a simulation at the command line. It is part of the
oms3-al | .jar and can be easily accessed by executing the jar file itsalf:

$ java -jar ons-all.jar
usage: java -jar ons-all.jar [-r|-e|-d|-a|]-s] <sinfile>
CLI access to simulations.

-r run the sinfile

-e edit paraneter in sinfile
-d docunent the sinfile
-a run the sinfile analysis
-s create SHA di gest
$
Note

The command line executes ons-al | . j ar, located in the same directory. Also, the library gr oovy-
al | -1. 6. x. j ar needsto bein the same directory (download the groovy binary distribution from http://
groovy.codehaus.org, the enbeddabl e directory contains this library) .

To run asimulation use acommand such as;

$java -jar ons-all.jar -Dwork="/tnp/prns2008" -r efc.sim
It isalso possible to specify the CLI class directly to account for different versions of the libraries:
$java -cp "ons-all.jar;groovy-all-1.6.5.jar" ons3.CLI -r efc.sim

By providing the - Dargument to the Java command line, system properties can be set for the simulation as shown
above.

3. References

» JavaDevelopment Kit version 6 [http://java.sun.com/javase]
» Netbeans IDE [http://netbeans.org]

* Eclipse IDE [http://eclipse.org]

http://groovy.codehaus.org
http://groovy.codehaus.org

Installation and Setup

» Groovy language specification and Devel opment Kit [http://groovy.codehaus.org]

Chapter 2. Developing Components

This chapter is designed as a step by step tutorial. It guides a user through the process of creating and testing
of components, their integration into more complex components (models), the data provisioning of models, and
finally their deployment into various environments.

Figure2.1. General Component Schematic

Input Output
-Parameter -Variables
-Variables :
§ ~, [Internal State]
)

A

| >

¥

Component

A component representing a certain conceptual function in a simulation is the foundation for each model. A hy-
drological model for example usually needs components for (1) handling input/output, (2) representing processes
of ahydrological system such as precipitation, interception and runoff, and (3) realizing general data processing
functions such as reading climate data or parameter sets. Ideally, the key to a proper model design based on com-
ponentsisaclean "separation of concerns' inamodel. Modeling in OM S and most other frameworks must answer
the question: “what qualifies a part of amodel to become a component?”’

» A component realizes acertain and mostly one conceptual function inamodel. It representsaphysical process,
a management action, a data gathering step, or the presentation of results to the user interface. Such functions
need to be identified and separated from each other. Each of these will result in a component.

» Anidentified component can be fully described regarding its function, data requirements and data offerings.
Therefore, the specification and later implementation of acomponent will be done with respect to its anticipated
simulation context, but a tight dependency to this context should be avoided. Later during development, the
component will be tested standalone using atest harness to validate the design specification.

» Components that model important functions and processes that recur across models and modeling projects
should be designed for portability and re-use. Some additional investment is required to produce this design,
but payoff can be substantial. Widely used components would be similar to widely referenced science in tech-
nical papers.

» Conceptually, models and sub-models (or modules) are aggr egated components, and conversely components
often are models in some form. Therefore modeling architecture is a question of granularity and depends on
the business needs of the customer. The model can be large, designed to address many business requirements
comprehensively, or it can be small, arelatively simple service deployed as part of abusiness application work
flow.

A model also should be architected so that new science can be incorporated through time. Thisis best achieved by
architecting the model to contain well documented components that can be removed and replaced with updated
science. This also is a question of granularity. Sometimes it will be necessary to replace a module, other times

Developing Components

a simple component. And the design should take into account that models often should be built with a common
code base that permits contributions and updates from several modelers.

By analyzing simulation models a classification of potential components can be made.

Scientific components ... Implement methods and equations to estimate some physical phe-
nomenon. Examples would be a component estimating amount of water
evaporated from a certain land cover into, a component predicting the soil
loss due to wind erosion, etc. Such components usually apply some math-

ematical function.

Scientific utility components ... Support the analysis of models by providing statistical analysis methods
such asdescriptive statistics, frequency analysis, etc. Distribution generator

components are used to provide data to scientific components.

Control components ... Are responsible for managing the execution of a model. A Runge-Kut-
ta Integration component, a Time management, or a Convergence criteria

component are examples for this.

Data I nput/Output Components ... Are providing data to other components in a simulation model. Such
components could handle data transfer from databases or filesto the model.
Visualization componentslike graphs or spreadsheets are also falling under

this category.

Components are the basic building blocks of models in OMS. Components can be simple or very complex, de-
pending on the scope and the problem domain. The Figure below shows different paths to create a component the
can be used within a OMS model.

Figure 2.2. Component Development

Mew Concept || Prototype —
7
e
Legacy {Wrapping)

Java N —— T 1F POJO —
/|| Refactored |} T OmMs
————— Java = - W component

Legacy) (Wrapping Sl | !
! - FORTRAN |
FORTRAN | = JHA
Module T nterface
Refactored
FORTRAN (Wrappingl |/
e i
— L CfC++
Legacy | _ — " File
C/Cr+ B
L \
Refactored !
CiC++
—
Identify Refactor Modularize Annctate

There are 4 identified phases of development that might not all apply in real world. It depends on the existence or
quality of the existing code, the skills of the devel oper, and the avail able tool sto support and automate this process.

Thefirst two phases (Identify and Refactor) focus on the identification and improvement of existing code, where
asthe two last steps adjust the code to OM S.od/projects/oms3.prj.

1) Identify needed simulation ap-
proaches.

In thisfirst step the simulation code should be identified.

2) Refactor existing code or proto-
type new solutions as needed.

Refactoring refers to the concept of improving the design of existing code
without changing its behavior. Refactoring addresses the fact that code is

Developing Components

(usualy) written without extensive reuse outside of its original scope in
mind. There are recommendations, methods and tools available to support
such a process.

3) Modularize the code. This step closely follows the previous one but aims at creation of self con-
tained modules or software units. The result the of the processis a generic
component free from hidden dependencies.

4) Annotate the code. Finally the modeler annotates the component, the fina step to making it
OM S-compliant. Annotation provides the modeler, the modeling team, and
external users meta data about the component to aid in the modeling pro-
cess. Annotations also become important when the component or model is
used in customer business applications that require validation and certifi-
cation of the science.

At the end of this process you have produced a component that can be used within OM S, and other frameworks.

Note

All native components remain intact, and still can be used in their original context (if refactored right).

The next sectionswill introduce component devel opment of Javacomponents step by step. Section ???will demon-
strate adjusting existing legacy components so that they can be used with OMS.

1. Example: Developing Components for a Monthly
Water Balance Model

Monthly water-bal ance model s have been used as a means to examine the various components of the hydrological
cycle (for example, precipitation, evapotranspiration, and runoff). Such models have been used to estimate the
global water balance to develop climate classifications to estimate soil-moisture storage, runoff, and irrigation
demand ; and to evaluate the hydrological effects of climate change [McCabe2007].

The model, referred to as the Thornthwaite water-balance program, can be used as a research tool, an assessment
tool, and as atool for classroom instruction.

The water-balance model (Figure 2.3, “ Thornthwaite Monthly Water Balance Model Schematic”) analyses the
allocation of water among various components of the hydrological system using a monthly accounting procedure
based on the methodol ogy originally presented by Thornthwaite [Thornthwaite1948],[Mather1978]. Inputs to the
model are mean monthly temperature (T, in degrees Celsius), monthly total precipitation (P, in millimeters), and
the latitude (in decimal degrees) of the location of interest. The latitude of the location is used for the computation
of day length, which is needed for the computation of potential evapotranspiration (PET). The model is referred
to as the Thornthwaite model. A discussion of the individua process components of the water balance can be
found in [M cCabe2007]

Developing Components

Figure 2.3. Thornthwaite Monthly Water Balance Model Schematic

Temperature (T) Precipitation (F)
-
LR
A Y LS -
A"
\ *a
~
Potential ~.
evapolranspiration ~
(PET) v e
A Y \‘
N\ Snow (P W
4)
Actual Snow melt Rain (Frae)
a (SM)
evapotranspiration Snow
Po[,QET?I I T storage | Direct runcff {DRQ)
(snostor) y ——p

Surplus runoff (RO)
—_
Soil-moisture storage capacity (STC)

Soil-moisture storage (5T)

This model may serve as an example to create an component based implementation. The processes are simple
and straightforward, however its structure and general setup istypical for many hydrological and environmental
models. The following sections will explain the component creation of based on the processes, their integration
into afull model, and finally the provisioning of data, simulation setup and output analysis.

2. Developing a PET Java Component

The very basic building block of a simulation model is a component as stated earlier. It implements usually one
purpose within alarger model. The concepts are already stated as physical processes of the model. Hence, monthly
PET computation should be implemented as a component.

Monthly PET is estimated from mean monthly temperature (T) and is defined as the water loss from alarge, ho-
mogeneous, vegetation-covered areathat never lacks water [Thornthwaite1948],[Mather1978] . Thus, PET repre-

sents the climatic demand for water relative to the available energy. In this water balance, PET is calculated by
using the Hamon eguation [Hamon1961]:

Equation 2.1. Potential Evapotranspiration (Hamon)
PETamon = 13.97 xd x D’ x W,

where PET Hamon iS PET in millimeters per month, d is the number of days in a month, D is the mean monthly
hours of daylight in units of 12 hours, and W, is a saturated water vapor density term:

Equation 2.2. Saturated Water Vapor Density

4,95 x £0.062xT
W:="""100

where T is the mean monthly temperature in degree Celsius [Hamon1961].

Step 1: Coding the Equation

As afirst task the core equation code necessary for the computation of pet is created. The equations above are
trandated into valid JAVA statements. All variables that are either required as input or provided as output are
shown in bold.

Developing Components

Example 2.1. Hamon equations (code fragment)

int[] DAYS = {

31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 /] 1.
b
double W = 4.95 * Math. exp(0.062 * tenp) / 100.0; /1l 2.
double D2 = (daylen / 12.0) * (daylen / 12.0); /1 3.
doubl e d = DAYS[nont h]

double pet = 13.97 * d * D2 * W; /] 4.

1. Anint array holds the number of days per month, used in 3.
2. Compute W , the Mat h class providesthe exp() method.

3. Compute dayl en input in units of 12 hours.

4. Thefinal pet calculation.

Note that the data type doubl e is a 8-byte floating point data type in Java

The code aboveisvalid Java code implementing the needed equations for Hamon, however is hasto be structured
asvalid JAVA source code.

Step 2: Creating the Class

A JAVA class has to be created, its content is shown below. Use a Java IDE or atext editor to create this source.
Note that the class HamonET has to be stored in a file HanonET. j ava within the folder t hor nt hwai e (package
name) according to the Java language specification. Common Java | DE provide very good support for handing
those tasks.

Developing Components

Example 2.2. HamonET Class (HamonET .java)

package thorthwaite; /1 1.
i mport java.util.Cal endar; /1l 2.
i mport java.l ang. Mat h;
public class HamonET { /1 3.
static final int[] DAYS = { /1 4.
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
IE
publ i ¢ doubl e tenp; /Il 5.

publ i c doubl e dayl en;
publ i c Cal endar ti mne;

publ i c doubl e pet;

public void conmpute() { /1 6.
if (temp <= -1.0) {
pet = 0.0;
return;
}
int month = tine. get(Cal endar. MONTH) ; /Il 7.
doubl e W 4.95 * Mat h. exp(0.062 * tenp) / 100.;

doubl e D2 (daylen / 12.0) * (daylen / 12.0);
pet = 13.97 * DAYS[nonth] * D2 * W,;
if (pet <0.0) {
pet = 0.0;
}

1. The packaget hor nt hwai t e provides a'name space' for this class. A hame spaceis an arbi-
trary named container providing for related classes. An aternative name could be ‘et * to hold
related evapotranspiration classes.

2. Thei nport statements are introducing core Java utility classesinto HamonET.
3. Thecl ass declaration defines the HamonET class, which hasto be publ i c.

4. The DAYS array is declared within the class as'st ati ¢ fi nal ' which makes its content not
modifiable and visible for al instances of HanonET.

5. The field declaration section of the class lists the Input/Output fields. Note that time is de-
clared asacal endar object, a class provided by the Java API.

6. The method compute encapsulated the Hamon equations. It is declared publ i ¢ and voi d,
which means no return type. There are also no arguments for this method.

7. The actual month is obtained from the time object. Note that the return value is zero-based,
which makes nont h usable as index for the DAYS array.

Up to this point we have created a class that is a valid Java class. This is aso being referred as a POJO (Plain
old Java Object).

Step 3: Creating the OM S3 Component

Just a very little work is required, to turn the HanonET Java class into an OMS3 component. For a developer it
mainly means that the existing elements that are important for (i) dataflow and (ii) code processing as devel oped
inthe previous step have to be annotated. No other changes are required in this example. Annotations are provided
by the OMS3 core library.

Developing Components

Example 2.3. Annotated Component for Execution (HamonET .java)

package thornt hwaite;

i mport ons3. annotati ons. *; /1 1.
import java.util.Cal endar;
i mport java.l ang. Mat h;

public class HanobnET {
/'l nunber of days per nonths
final static int[] DAYS = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
IE

@n public double tenp; /1l 2.
@n public double dayl en;
@n public Cal endar tinmne;

@ut public doubl e pet; /1l 3.
@Execut e /Il 4.

public void conmpute() {
if (temp <= -1.0) {

pet = 0.0;
return;
}
int month = tine. get(Cal endar. MONTH) ;
double W = 4.95 * Math.exp(0.062 * tenp) / 100.;
double D2 = (daylen / 12.0) * (daylen / 12.0);

pet = 13.97 * DAYS[nonth] * D2 * W,;
if (pet <0.0) {

pet = 0.0;
}

}
}

1. Add the import statement for including all OMS3 annotations into this class. The package
ons3. annot at i ons contains them all. Section ??? discusses them in detail.

2. Annotate the fields which serve as input to all equations in HamonET with @ n. Each field
has to have its own annotation which preceded the field. Note that the field can be declared
public, however it is not required.

3. Annotate the fields which serve as output to all equationsin HamonET with @ut .

4. Annotate the main computational method of this classwith @xecut e. Asarequirement, this
method must have no arguments, must be public, and no arguments.

Now we turned the HamonET class into a OM S3 component. It isin fact still a POJO that still can be used as such
outside of the framework, aslong as the OM S3 annotations are put into the CLASSPATH.

The conceptual schematic of the HamonET component shows Figure ???

10

Developing Components

Figure2.4. HamonET Component Schematic

daylen fhours] | @In @0ut
. et fmm/month
time fmonth] HamonET pet] / J
temp [deg C]
PQJO & Annotation Component

The component is now fully functional in OMS3 and ready to go into a model for execution. However, OMS3
offers more annotations that enrich the component for

1. Documentation and archival,

2. Robustness improvement due to data verification, and

3. Later Traceability of ssimulation results.

The following adds the annotations for those aspects.

Step 4: Improving the OM S3 Component

Theons3. annot at i ons package contains arich set of annotationsthat are optional for core component execution
but should be good practice in order to provide for awell rounded set of context information. Since annotations
are being used, this context information is very much attached to the source code. Therefore, it will be aways

in sync with the source.

Context information can be attached to the (i) whole component and (ii) the I n/ cut fields as shown below.

11

Developing Components

Examp'package thornthwaite; =

i mport ons3. annotati ons. *;
import java.util.Cal endar;
i mport java.l ang. Mat h;

@escription /1 1.
("Hamon Potential Evapotranspiration." +
"Cimatic demand for water relative to the avail abl e energy, " +
' after Hanon.")
@\ut hor
(nanme= "Jo Scientist", contact= "jos@ esearch-org. edu")
@Xeywor ds
("Hydrol ogy, Potential Evapotranspiration")
@i bl i ogr aphy
("Hamon, WR., 1961, Estinmating potential evapotranspiration. " +
"Journal of the Hydraulics Division, " +
"Proceedi ngs of the Anmerican Society of Civil Engineers,
"v.87, p.107-120.")
@our cel nfo
("$HeadURL: http://svn.javaforge. com svn/ons/branches/ +
ons3. prj.thornt hwait e/ src/tw HanonET. j ava $")
@t at us
(St at us. DRAFT)
@/er si onl nf o
("$ld: HanopnET.java 319 2009-08-20 17: 34:32Z odavid $")
@.i cense
("http://ww.gnu.org/licenses/gpl-2.0.htm")

public class HanmonET {
/'l nunber of days per nonths
final static int[] DAYS = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
IE

@escription(" Tenper at ure") /1l 2.
@hnit("C")
@n doubl e tenp;

@escription("Day length in hours.")
@Range(m n=9, max=15)
@n doubl e dayl en;

@escription("Current tinme")
@n Cal endar tinme;

@escription("Potential ET")
@Jni t (" mm nmont h")

@Range(m n=0. 0)

@ut public doubl e pet;

@Execut e
public void compute() {
if (temp <= -1.0) {

pet = 0.0;
return;
}
int nmonth = tine. get(Cal endar. MONTH) ;
double W = 4.95 * Math.exp(0.062 * tenp) / 100.;
double D2 = (daylen / 12.0) * (daylen / 12.0);

pet = 13.97 * DAYS[nmonth] * D2 * W;
if (pet < 0.0) {

pet = 0.0;
}

}
1} Component annotations for documentation, source code repository references, literature ref-

Rigiel Haen B IaN eaeEeRaRNgy and range constraints.

12

Developing Components

The component as shown in Step 4 is very well annotated. All code and meta information resides in one source
file. This has the great advantage that a metadata/documentation context is always directly attached to the source
code. Such an approach is always preferred. | some cases it is necessary to separate the metadata/documentation
aspect from the component source. If the component is only available in its compiled form (as POJO), no source
codeisavailable, it can till be annotated and used as a OM S3 component.

L ets suppose we have the Java class as shown in step 2 only available ascompiled . cl ass or . j ar file (executable
binary format). By creating an additional class hamed HanonETConpl nf o. j ava, the compiled HamonET. cl ass file
can be annotated too. (the Conpl nf o file name suffix indicates the annotation extension of the same class without
this suffix). The class HanonETConpl nf o. j ava isreferred as Annotation Component (Figure ?77?).

Figure 2.5. Annotation Component

daylen fhours] | @In @Out
. pet{mm/month]
time [month] | HamonETComplinfo —
temp [deg C]
- Annotation Component
1
HamonET
POIO

The annotation component class must be an abstract Java class. It includes only the language constructs from the
component, that are relevant to the framework, such as only the | n and cut fields and the tagged methods. Those
methods must be declared abst r act too, hence they do have no implementation body.

13

Developing Components

Example 2.5. Pure Annotation Component (HamoET Complnfo.java)
package t hornt hwai t e;

i mport ons3. annot ations. *;
import java.util.Cal endar;
i mport java.l ang. Mat h;

@escription
("Harmon Potential Evapotranspiration." +
"Climatic demand for water relative to the avail able energy, "+
"after Hanon.")

@\ut hor
(nane= "Jo Scientist", contact= "jos@esearch-org. edu")
@eywor ds
("Hydrol ogy, Potential Evapotranspiration")
@Bi bl i ogr aphy
("Hamon, WR., 1961, Estinmating potential evapotranspiration. " +
"Journal of the Hydraulics Division, " +
"Proceedi ngs of the American Society of Cvil Engineers, " +

"v.87, p.107-120.")

@sour cel nfo

("$HeadURL: http://svn.]javaforge.com svn/ons/branches/" +

ons3. prj .thornthwaitel/src/tw HanonET. j ava $")

@5t at us

(St at us. DRAFT)
@/er si onl nf o

("$1d: HanonET.java 319 2009-08-20 17: 34: 32Z odavid $")
@.i cense

("http://ww.gnu.org/licenses/gpl-2.0.htm")

public abstract class HanbnETConpl nfo { /1 1.
@escri ption(" Tenper at ure")
@hnit("C")
@n doubl e tenp;
@escription("Day length in hours.")
@Range(m n=9, nmax=15)
@n doubl e dayl en;

@escription("Current tinme")
@n Cal endar tine;

@escription("Potential ET")
@Jni t (" mm nont h")

@Range(m n=0. 0)

@ut public doubl e pet;

@xecut e
public abstract void conpute(); HanonETConpl nf o

}

1. The Annotation Component is declared abst r act and its name is prefixed with Conpl nf o.
2. The compute method is also declared abst r act , no implementation.

The Component Annotation approach has the advantage to keep the Component 100% as a POJO component with
no dependency to the framework annotations. However, it means an additional burden to the developer to keep
POJO Component and Annotation Component in sync during development.

Bibliography

[McCabe2007] McCabe, G.J., and Markstrom, S.L., 2007, A monthly water-balance model driven by a graphical
user interface: U.S. Geological Survey Open-File report 2007-1088, 6 p.

14

/1

2.

Developing Components

[Hamon1961] Hamon, W.R., 1961, Estimating potential evapotranspiration: Journal of the Hydraulics Division,
Proceedings of the American Society of Civil Engineers, v. 87, p. 107-120.

[Mather1978] Mather, J.R., 1978, The climatic water balance in environmental analysis: Lexington, Mass,, D.C.
Heath and Company, 239 p.

[Thornthwaite1948] Thornthwaite, C.W., 1948, An approach toward a rational classification of climate: Geo-
graphical Review, v. 38, p. 55-94.

3. A FORTRAN PET Component

Up to this point we discussed the creation of components in the Java programming language. It is possible, how-
ever, to create components that originate from languages such as C, C++, and FORTRAN, popular and widely
used native languages within the scientific community.

The concept of embedding native codeisderived from JINA (Java Native Architecture), an open sourcelibrary that
tremendoudly simplifies the use of native code by providing atransparent and easy access to Dynamically Linked
Libraries (DLL) under Windows or Shared Libraries under Linux/UNIX/MAC OS X. The term DLL refersto
those type which represent the same concept. Appendix ??? discusses all details of DLL creation, integration, and
use for the C,C++, and FORTRAN programming languages.

In general OMS3 can directly interact with DLLs on all major platforms directly without the need of creating any
glue source code between Javaand aDLL.

Figure 2.6. Native HamonET Component

daylen fhours] | @lIn @Out
. pet[mm/maonth]
time fmonth] | HamonETComplinfo SN
temp [deg (]
- Annotation Component
1
HamonET
POIO
i W
ETLib DLL

As an example, the HaronET component now gets implemented using the FORTRAN programming language.
Figure ?7?? shows the involved software units. The component accesses the the DLL (ETLi b. dI 1), that is being
created from the FORTRAN source code haron. f 90. It should be noted that this example used the annotation
component approach, the POJO and annotation component can be combined too for native components.

15

Developing Components

Example 2.6. FORTRAN Component (hamon.f90)

I File: hamon. f 90

I Aut hor: od

|

FUNCTI ON pot ET(dayl en, tenp, days) BIND(C, name='hanon') I 1.
REAL*8, VALUE :: dayl en, tenp I 2.
| NTEGER* 4, VALUE :: days
REAL*8 :: pot ET
REAL*8 :: W, D2

W = 4.95 * exp(0.062 * tenp) / 100.0
D2 = (daylen / 12.0) * (daylen / 12.0)
potET = 0.55 * days * D2 * W

if (potET <= 0.0) then

potET = 0.0

endi f

if (tenp <= -1.0) then
potET = 0.0

endi f

pot ET = potET * 25.4

END

The FORTRAN 90 source as shown above contains some F2003 enhancements which simplify
the language interoperability, mostly C interoperability. Most compilers support those features

1. The function declaration ends with the BI ND() construct, providing for easier C interoper-
ability, mostly taking care of the name underscoring inconsistencies within object files and
DLLs across compilers. It allows to define an name alias for other programs to calling this
function. In the case above, the FORTRAN function pot ET can be called as hanon.

2. Thefunction parameter are declared as 'value parameter’, again a F2003 extensi on supporting
C calling conventions.

Therest of the function is just plain FORTRAN implementation if the Hamon equations. As a next step, the file
hamon.f90 will be compiled and linked into aDLL, ETLi b. dI 1 on Windows, and | i bETLi b. so on Linux/Unix.
Theinstructions for different compilers on different operations systems can be found in the Appendix ???2.

Now the HanmonET component gets created to use the DLL. Note that if you use a DLL, a developer till needs
to create a Java component containing the annotation meta data in order to provide execution and data flow in-
formation.

16

Developing Components

Example 2.7. Component Binding of a DLL

package thorthwaite;

i mport java.util.Cal endar;
import ons3.util.Libraries; /] 1.

public class HamonET {

@LL("ETLi b") /1l 2.
interface Et extends com sun.jna.Library { /1 3.
Et lib = Libraries.bind(Et.class); /] 4.
doubl e hanmon(doubl e dayl en, double tenp, int days); /l 5.
}

static final int[] DAYS = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
b
publ i ¢ doubl e tenp;
publ i ¢ doubl e dayl en;
publ i ¢ Cal endar ti nme;
publ i ¢ doubl e pet;
public void conmpute() {

int month = tinme. get(Cal endar. MONTH) ;
pet = Et.lib.hanmon(dayl en, tenp, DAYS[nonth]); /] 6.

1. OMS contains a support library for handling DLLs. Itsa part of theut i | package.

2. The @LL annotation refers to the external DLL name in its argument. It has to annotate the
interface that follows the following line.

3. Theinterface Et extendsthe JNA Library interface.

4. the Li brari es. bi nd() call binds the DLL ETLi b. dI | to the interface ET_FTN. The static
variable lib will reference an an instance which is bound to the native DLL.

5. The hamon method listed here is a Java surrogate for the FORTRAN hanon method in the
DLL. A cdl to this method would result in caling the FORTRAN function. Note that the
name, argument types and return type have to match in order to map.

6. Thecall performed in compute used thelib referencewithin Et to passintheactua arguments
as Java variables witch are at the receiving end arrive as FORTRAN objects.

At model runtime the it has to be ensured, that the DLL is accessible with the environment path, or a system
property j na_l i brary_pat h hasto beto point to the DLL's directory. See for detailsin Appendix ???

4. A C PET Component

The same PET component can aso be implemented in C or C++, as the program listing shows below. Default C
calling conventions for function arguments and function naming are being used, Also, type names are similar to
Java and show somehow the origins of the Java programming language.

17

Developing Components

Example 2.8. C Component (hamonc.c)

/*

* File: hanonc. c

*/

doubl e hanmon(doubl e dayl en, double tenp, int days) {
double W = 4.95 * exp(0.062 * tenp) / 100.;
double D2 = (daylen / 12.0) * (daylen / 12.0);
doubl e potET = 0.55 * days * D2 * W,;
if (potET <= 0.0) {

pot ET = 0. 0;

}

if (temp <= -1.0) {
pot ET = 0.0;

}

pot ET *= 25. 4,

return pot ET;
}

The code above (hamonc.c) should be compiled into aDLL or shared library using a C or C++ compiler. Its use
in a OMS3 component is identical to its FORTRAN counterpart as described in the previous section. The only
change might be the DLL name as specified in the @LL annotation.

5. Component Method Annotation

As seen in the developed example, the conput e() method was annotated with @xecut e annotation to point the
framework to the entry method for acomponent's execution. This method provides the core purpose and equations
of the Hamon class. For the framework the name of this entry method isirrelevant, aslong as it has the expected
method signature. The method has to be publ i ¢, voi d return type and no arguments, the method name does not
matter.

All together there are three types of annotations that indicate execution entry points of a component:

@nitialize Annotates a component's method that initializes the component. Some components need to
setup and handle an internal state in order to alow for their execution. Note that no input
to the component (@ n) can be used during initialization. Those values are not present at
initialization time. The initialization method gets called only once on model startup. It is also
called after instantiation and before this and any other component's execute method. Examples
might be allocation of memory, opening of data base connections, file handles, or the creation
of auser interface element. This annotation is optional.

@xecut e This annotation annotates the method implementing the core functionality of the component.
This method is required. Within this method usually all @ n tagged fields are accessed, equa-
tionsare applied and @ut fields are being assigned to results. It can be safely assumed that all
@ n tagged fields contain valid values.

@inalize Finalize is called after the last @xecut e of this and any other component in the model. It
should be used to gracefully end the model run by cleaning up resources, such as closing open
file streams or data base connections, deallocation of memory if native code isinvolved. This
annotation is optional .

All of the annotated methods must have the same signature: public void <nanme>(). Any other signature is
invalid. The methods can also declare Exceptions being thrown. A component must have at least the @xecut e
annotation.

The example below shows the use of the method annotations in detail.

18

Developing Components

Example 2.9. Unconditional Initialization

public class Ci matel nput {

DBConnecti on db;
Iterator<String[]> inp;

@ut public double tenp;
@ut public doubl e precip;
@ut public bool ean noreDat a;

@nitialize

public void init() throws Exception {
db. open(Syst em get Property("db. connect");
inp = db.iterator();

}

@xecut e
public void exec() throws Exception {
if (inp.hasNext()) {
String[] row = inp.next();
tenp = Doubl e. parseDoubl e(row 2]);
preci p = Doubl e. par seDoubl e(row 3]);

}
noreData = i np. hasNext () ;
}
@inalize
public void done() {
db. cl ose();
}

The Climate input example above used all three method annotations. A data base connection gets established
during initialization, within execute data is fetched from it row by row on each call. At the end of execution the
database connection is closed.

The connect information isprovided asastatic system property in thiscase. Sincetheinitialization does not depend
on any state variable of the component this method is called unconditional initialization

5.1. Conditional Initialization

Another practical method for component initialization is shown in the examplelisting below. Unlike unconditional
initialization, the conditional initialization can take input values of the component into account. Hence, it hasto
be called from within @xecut e, since it needs valid @n values. The @ni ti al i ze tagging is not needed, the
@ ni ni t () method can be declared private, sinceit only called from within this component (1).

19

Developing Components

Example 2.10. Conditional I nitialization
public class Climate {

@n public File climatel nput;

@ut public double tenp;

@ut public doubl e precip;

@ut public bool ean noreDat a;

@ut public Cal endar time = new G egorianCal endar () ;

/** Row | nput iterator*/
Iterator<String[]> inp;
/[** data formatter */
private SinpleDateFornmat f;

private void init() throws Exception { /1 1.
CSTabl e table = Datal O table(climtel nput, "Cinmte");
f = new Si npl eDat eFor mat (t abl e. get Col utml nfo(1).get("Format"));
inp = table.rows().iterator();

}
@Execut e
public void execute() throws Exception {
if (inp == null) { /Il 2.
init();
}
if (inp.hasNext()) {
String[] row = inp.next();
time.setTinme(f.parse(rowf1]));
tenp = Doubl e. par seDoubl e(rowf 2]);
preci p = Doubl e. par seDoubl e(row 3]);
}
nmoreDat a = i np. hasNext () ;
}
@inalize

public void done() {
Dat al O di spose(i np);
}
}

Thismethodol ogy provides more flexibility, becauseit is more dynamic within the execution. However, an check-
ing on an internal variable is usually required to indicate the need for thei nit () call, hence called conditional
initialization (2).

6. References
» JavaNative Architecture (https://jna.dev.java.net)
» GCC (http://gcc.gnu.org)

* Intel Compiler (http://software.intel.com/en-us/intel-compilers)

20

Chapter 3. Component Integration

So far, we talked about individual components, their internal structure, annotated elements such as fields and
methods, and meta data annotations for components. In this chapter we will explain the assembly of multiple
components into coarser grained components, that becomes eventually the model.

1. Component vs. Model
[tod]

2. Compound Java Components

A Compound is an aggregate of simple components. It can be viewed as afacade for itsinternal components that
are usually considered simpler. Figure ??? showsthe schematic of ageometry compound component, that contains
three internal components. They are connected to provide data for computing the surface area of a cylinder. They
areal so connected to the compounds I nput and Output. If theinternalsof thecyl i nder Conpound would be omitted,
it would look like a simple component with height and radius as input and surface as output. It can certainly be
used this way in another compound.

[tbd]
2.1. Connecting Components

The connect () method allows to connect the output field of a component (tagged as @ut) with an input field
of another component (tagged with @ n). Both components are internal to this compound. Their field types have
to be compatible.

public void out2in(ject from String clCQut, Ooject to, String c2ln);
f r om- componentl c2
claut —output field name of component 1
t o — component 2

c2l n —input field name of component 2

If c10ut and c2In are the same name, a shortcut can be used:
public void out2in(Qoject cl, String clCQut, Object ... c2);
c1 - componentl c2
cilaut —output field name of component 1

c2 —component 2

2.2. Input and Output mapping

The mapin() method connects a compounds @In field with an internal component’s @In field. The mapOut()
methods works similar for @ut fields. Unlike the connect() method above, the map???() methods require both
field to have the same data flow tag. The types of those fields have to be compatible.

public void in2in(String in, Object c2, String c2ln)

i n -infield of this component

21

Component Integration

cilaut —output field name of component 1

c2 —component 2

If both input fiels do have the same name a shortcut can be used:
public void in2in(String in, Cbject ... c)
i n -infield of this component

¢ —internal componentsto mapinto

3. Temporal Iterations
[tbd]

4. Spatial Iterations
[tbd]

22

Chapter 4. Simulations

In this chapter the structure, setup, and execution of model simulations are discussed.

A simulation within OMS is defined as the application of a model (or component) with a concrete data set to
predict the actual behavior of a system or the environment. A developed model component is needed aswell asa
dataset providing input data for the model. Input data can be supplied directly to the model.

Theimplemented simulation concept leverages the concept of Domain Specific Languages (DSL) asintroduced in
the Groovy language. Introducing groovy and DSL is outside of the scope of this handbook, only the implemen-
tation for ssimulation building will be discussed. Thereisno need to master groovy beyond the described concepts.
There are some general technical requirements for developing simulations.

* Inorder create anew or run an existing simulation the jar file gr oovy-al | . j ar hasto beinthe CLASSPATH
of your IDE or other runtime environment or you just install the Groovy package (http://groovy.codehaus.net).

» Thesimulation file, which will be explained in detail below has to have the extension *. gr covy.

At least, asimulation can be executed using the command line like:

$ java -cp "./myconponents.jar" sim groovy

1. Data Input/Output format

This chapter covers data input and output handling. Although this library is a part of the OMS3 core package
structure it is neither depending on OMS3, nor OMS3 is depending on it. They just play well together. Design
motivations for this package were (i) the support of typical scientific Data 10 such as tables and properties (ii)
human readability (it should not be too verbose), (iii) it hasto support meta data, (iv) it should be consumable by
other tools and (v) it should allow the definition of asimple AP, to programmatically read and write data.

There two type of informations that adhere to this are:

 Tables, containing tabular information

» Properties, referring to key/value property data

The Data |O format was commonly defined for both, tables and properties. The format is based on CSV structure
that has been extended with some metatags. A file might contain any number of tables and properties.

Both types of information can be mixed in the same file and may occur multiple times. The definitions for tables
and properties are similar, both support meta data.

e Thedatafile compliesfully to the CSV standard.

» Thefile name extension is csd, standing for "comma separated data’. It might be zipped, and would then have
the extension csz.

» A csd file might contain atable or property section, or multiple of those, or a mixture of both.
* A # symbol at the beginning of the line indicates a comment line.

* Empty lines areignored.

1.1. Keywords

Keywords are used to indicate properties and tables in the file.

23

Simulations

Table4.1. CSV Tags

Keyword Name Description
@T Table Defines anew table
@H Header Starts aheader in atable
@S Section Starts anew property section
@P Property Starts a new property
Note

All of those keywords can be followed by optional meta data.

Note

Keywords are case insensitive (@r is equal to@).

1.2. Meta data

Meta data may always follow the property and table markups. There is one meta data entry by line. Such an entry
may have a key/value pair (separated by a comma), or a single key with no value indicating the presence of a
meta data entry.

The property section example below, shows section level meta data supporting the whole "Parameter set" such
asdata, or cr eat edBy, aswell askey vaue pair property meta data such as description or single value properties
such as public. It might be good practice to quote meta data values in general to account for potential commas,
however it is not required.

Table4.2. Meta Data Examples (@S and @T)

Name Description Example
Cr eat edBy data set creation date Creat edBy, "JCarl son"
Cr eat edAt user who created the data set CreatedAt, "My 1st, 2008"
Descri ption brief data set description Descri pti on, "EFC climte
file"

Version information (use in con-|Versioninfo, "$Id:"
junction with VCS)

Source information (usein conjunc- | Sour cel nfo, "$HeadURL: "
tion with VCS)

Ver si onl nfo

Sourcel nfo

1.3. Properties

Properties are key/value pairs (KVP) that are aggregated in a section. There could be meta data for the whole
section @ and also for each property @. The example below shows a property section.

Property Example:

@, "Paraneter"
CreatedAt, "Jan 02, 1980"
Creat edBy, Joe

Single Properties

@, coeff, 1.0

description, "A coefficient"
public

@, start, "02-10-1977"
description, "start of sinmulation"

24

Simulations

A proper section startswith the @ keyword, followed be the name of the property section. It isfollowed by optional
meta data. M eta data keys/values can be arbitrary, and may occur at any number. A single property startswith the
property keyword @, followed by the property name and the property value. Optional meta data may also follow
asingle property. The property section ends at the beginning of the next section or table or the end of thefile.

1.3.1. Property Key/Value Substitution

Properties support internal key/value substitution. This feature hel ps organizing property sets more efficiently, An
example is shown below. A directory property i di r isdefined and internally used by multiple files.

Input file folder (variable)
@, idir, "ccreek"
Description, "Data directory"

@, ahunfil eNane, "${idir}/ahum dat"
Description, "Absolute Humidity Data"

@, gwkil eNane, "${idir}/hgeo. par"
Descri ption, "Hydrogeol ogy Data"

The expression ${ <pr op_key>} will be replaced with <pr op_val ue>, if there is somewhere else within the same
property set a property defined as @, prop_key, prop_val ue.

1.4. Tables

Tables consists of columns and rows, and optional table meta data. Columns may have a type and optional meta
data. Metadatais organized as pair key, value. A table requires two key words, @ (Table) and @1 (Table header).
The @ keyword tags the start of atable definition, the @ tag starts a column definition.

Tables can be generated using any text editor. Spreadsheet tools usually do allow the export into a CSV file.

Table Example:

tabl e exanpl e

@, "Exanple DataSet"

Creat edAt, 5/11/06

Creat edBy, JackC

Now, there is header information
@, time, b, c

Type, Dat e, Real , Real

Format, yyyy- MM dd, #0000. 00, #000. 0000
, 2006- 05- 12, 0000. 00, 001. 1000

, 2006- 05- 13, 0001. 00, 002. 1000

, 2006- 05- 14, 0002. 00, 003. 1000

, 2006- 05- 15, 0003. 00, 004. 1000

, 2006- 05- 16, 0004. 00, 005. 1000

, 2006- 05- 17, 0005. 00, 006. 1000

, 2006- 05- 18, 0006. 00, 007. 1000

A Table consists of three main sections:

1. Thetable header, indicated by @, followed by the name of the table. The next lines may havetable level meta
data, one meta data entry per line. Meta datais optional.

2. The table header is followed by the column header, indicated by the @ keyword. Next to this al the column
names are listed. The next lines may contain column meta data, starting with the key, followed by the values
for each column (Example above shows Type and Format for the columns).

3. Datarows start with a',' asthe first character; values are comma separated.

A minimal table with no optional meta datalooks like this:

@, exanple data table

25

Simulations

1.5. Using the DatalO API

[TBD]

2. Concepts and Common Elements

This Section introduces the concepts and common elements of simulationsin OMS.

2.1. SimBuilder

The common start and entry point for developing a ssimulation is the class Si nBui | der . This classis part of the
OMS simulation package.

Si nBui | der providesfor two main features

1. The Creation of different kinds of simulations by using a very easy language structure
2. The Execution of a simulation once its built successfully.

. There are at least two parts that are common to every simulation as shown below:

A first Smulation:

sb = new ons3. Si nBui | der () Il (1)
sb. si m(nane: " Si npl eTWWbdel for EF"') { Il (2)
/| define the nodel
nmodel (cl assnane: "tw. Thor nt hwai te") {
/1 add paraneter
paraneter {
climateFile "c:/od/projects/ngnf.nodels/src/tw climte.cst"

out putFile "out put . csv"
runof f Factor 0.5
| atitude 35.0
sncap 200.0
}
}
}

(1) Creating the Builder This statement instantiates a builder object using its class
ons3. Si nBui | der ; In the example above it is names sb, but this name is
just arbitrary.

(2) Creating the Simulation from Usethe si nBui | der instance to create the simulation. The example above

the builder used the si mu method to create a basic simulation (si nu is explained in
detail below)

The si mBui | der class can be instantiated with the following properties:

level (javautil.logging.Level) The logging I evel that will be used on simulation building and be
passed on to the simulation instance. Valid logging levels are defined in
java.util .l oggi ng. Level aSALL, FINEST, FINER, FINE, CONFIG
I NFO, WARNI NG, SEVERE, oOr OFF. Setting the level to CONFI Gwill for ex-
ample report the building of the simulation as it performs. If not provided,
logging is set to OFF.

The following example illustrated the proper setting of those properties.

sb = new ons3. Si nBui | der (" CONFI G')

26

Simulations

sim = sb. si m(nane: " Si npl eTWWbdel for EF") {
/1 define the nopde
/...

}

simrun() /1 call run(), since no autorun

Setting the properties above may help inspecting the simulation build process as it progresses without automatic
execution.

OM S supportsdifferent flavors of model simulationsthat are all constructed in asimilar way fromthe Si nBui | der
class. Thisallows constructing and performing basic simulations, model calibrations, forecasting methods, uncer-
tainty and sensitivity analysis, or just plain model testing in an easy and consistent way. The following types of
simulations can be created using Si nBui | der .

Table 4.3. Simulation Types

Simulation Description
sim Basic Simulation
esp Ensemble Streamflow Prediction
luca Model calibration using the LUCA method
sce Shuffled Complex Evolution
nmocom M ulti-objective complex evolution procedure
gl ue Generalized Likelihood Uncertainty Estimation
dds Dynamic Dimensioned Search
rsens Relative Sensitivity
test Automated model testing

The following sections introduce elements that are commonly used across all simulation types, followed by the
simulations them selfs.

Common Simulation Element Structure
All simulations adhere to the same formal structure as used in the first simulation:
/] comment
<el ement >(<key: val ue>, <key,value>, ...) {
<el ement >(<properties |ike above>) {
[/l nore subl ements.
}
<el ement >(<properties |i ke above>) {
/] nore sublements or just elenents with val ue
<el ement > <val ue>
<el ement >(<properties |ike above>)
<el enent > {

<el enent ..
}

/'l nore subel enents

}

e Thereisoneroot element that is usually the smulation.

» Elements might have properties, provided in parenthesis after the element name. If there are no properties the
parenthesis can be omitted.

» Properties are alist of comma separated tuple of <key: val ue> pairs.

* Elements might have sub elements within curly brackets. If there are no sub elements, the curly brackets can
be omitted.

27

Simulations

» Elements can have just a value following the element name separated by space .

» Comments can be single lined (// ...") or can span multiple lines ("/* ... */") such asin C++, Java, or
Groovy.

2.2. Model (rmdel)

The model element is a part of every simulation and describes a model/component to be used. It is really top
component classthat isrepresented here. The component can beany Classthat hasat |east the @xecut e annotation
indicating the execution entry point.

The example below defines amodel by using the class "t w. Thor nt hwai t e".

nodel (cl assnanme: "t w. Thor nt hwai te") {
/1 optional paraneter definitions

}

The model might have optional parameter subelements. If no parameter should be defined, the subelement body
can be omitted:

nmodel (cl assnane: "t w. Thor nt hwai t e")

Specification
Name model - specifiesamodel for asimulation
Properties Name Description Type Required
cl assnane the classname of the|String Y
model.
Note
The classpath of the simulation should include all required classes for the model.
Subelements Name Description Type Default Occurrences 1)
par anet er the model param- |- - *
eter set
Parent(s) al simulation types
Notes ¢ 1) Occurrences: 1 - exact one time; + - one or more time; ? - zero or one time; * - zero or
more time

e Theclassasspecifiedincl assnane and every other class has to be found in the classpath of
asimulation. Setting the classpath can be done using command line arguments on simulation
execution, using environment variables, or other methods.

2.2.1. Parameter (paraneter)

The model parameter element allows the specification of input values for amodel. It can reference a external file
(csd) that containsthe model parameter as specified in Section ???. Thiselement also allowsthe direct specification
of parameter as sub-element. An example:

nodel (cl assnanme: "t w. Thor nt hwai te") {
/| paraneter
parameter (fil e: "parans. csd") {
climateFile "c:/od/projects/ngnf.nodels/src/tw climte.cst"
out putFile "out put . csv"

28

Simulations

runof f Factor 0.5
latitude 35.0
sncap 200.0
}
}

the parameter 'file' property takes a file name. Note that this file can be an absolute file path or a relative one,
that will relate to the base directory of the simulation. The parameter element can also have the parameter names/
values as sub-elements as shown above. Names are matching the @ n tagged fields of the model that is named
in the surrounding model element. Values are space separated from their keys and have valid Java/Groovy data
types such as Strings, Numbers, Files, etc. Those data types have to match the data type of the corresponding
@ n field in the model. However, the system will convert the values into the proper field data type, if the valueis
provided as String. (Thecl i mat eFi | e valuein the example above is of typeFi | e, but for convenience purposes
it is provided as String.

If both, thef i | e property is provided and there are al so parameter values given, and both thefile and the subsection
specifies the same parameter, then the sub element will overwrite the file specified parameter.

Thefollowing use of the parameter element is possible. Multiple parameter elements can help splitting parameter
setsin groups and allow for redefinition.

nmodel (cl assnane: "ny. nodel ") {
/| paraneter defintion
parameter (fil e:"parans. csv") /'l paraneterfile only
paraneter (file:"parans-dates. csv") /] paraneterfile only
parameter (file:"parans-files.csv") { // paraneterfile and explicit
testdir "/tnp/test"

}

paraneter { /1 only explicit paraneter
coeff 2.34

}

}

More general about parameter value reading and setting order: A parameter at a higher line number will overwrite
the same one at alower line number. It is not relevant if it comes from afile or is specified explicitly.

Specification

Name par amet er - describes a model parameter

Properties Name Description Type Required
file the parameter file String (csd - file) N

Sub elements Name Description Type Default Occurrences
<pname> <pval - |single model pa- | <component - *
ue> rameter field type>

Parent(s) model

Notes » A parameter element must have either afile property or at least one single parameter sub-

element or both, but cannot have non of both.

2.2.2. Resources (resource)

Every smulation has to manage resources such as amodel executable, DLLs, parameter files, climate data input,
documentation, etc. The resour ce element allows the listing of those resources. There are several uses for the
resource listings in a simulation.

» All jar files listed in a resource element are added to the cl asspat h for JAVA model execution. Jar files can
be referenced as local files or URLS, if the model should be loaded from a remote location. If no Jar files are
present, the model will use the default class path for the application.

29

Simulations

» All files regardless of which type are used for digest computation to ensure comprehensive hashing of all sim-
ulation resources.

» Other tools for remote execution within a cluster can use the resource listing to copy thiose files to other ma-
chines.

A resour ce section of asimulation might look like:

work = "hone/prj"

si m(nane: "ceap") {
/1
resource "$work/di st/ons3.prj.ceap.jar"
resource "$work/di st/ onms3. prj.ceap-lib.jar"
resource "$work/input/climte.csv"

Ther esour ce values always follow the resource keyword. It also shows the use of string replacement in order to
reference acommon root directory. Alternatively the files above can be provided as alist to one resource element.
(Note the required brackets and parenthesis). Both notations do have the same semantics.

resource (["$work/dist/ons3.prj.ceap.jar",
"$wor k/ di st/ ons3. prj.ceap-lib.jar",
“$wor k/ i nput/climate.csv"])

Specification
Name resour ce - list al relevant simulation resource files
Vaue Description Type Required
<single file> afile belonging to this| String (fileor URL) |y
simulation
<file list> al filebelongingtothis|List of Strings (file or|y
simulation URL)
Parent(s) sim nodel
Notes e A resour ce element must have either have asingle file value or alist of files.

* Theresource element should at least list all . j ar, . exe, . dl | filesthat are needed for execu-
tion.

Listed files should provide the full path.

* Theresource element of asi melement and anodel element are shared.

2.2.3. Logging (i oggi ng)

Thelogging sub-element isan optional part of amodel element. It controlsthelogging levelsfor single components
or for thewhole model. In order to usethelogging feature, components have to obtain and use alogger accordingly.

A logger is an object that allows output handling based on logging levels. Such levels usually indicate the severe-
ness of amessage. The Javalogging infrastructure supports per default 7 1og levels, ranging from FI NEST (the low-
est priority or importance) to SEVERE (the highest importance). In addition thereisalevel oFF to turn off logging at
al. If aloglevel isprovided, all log message of the same or higher priority are passed to the system and printed out.

The examples below shows the use of the logging. The logging element is part of the model element. It lists the
component class names and their associated log levels for asimulation run.

nodel (cl assnane: "ny. nodel ") {

30

Simulations

/1 1ogging definition

I oggi ng {

"Streanfl ow' "I NFO'

" Gl ow! " CONFI G'
}

}

The component St r eanFl owin'ny. nodel 'isassigned the Log level | NFO, the GaFl ow component will have afiner
grained CONFI Glog level. The default log level for al other components in the model is WARNI NG,

nodel (cl assnane: "ny. nodel ") {
I oggi ng (all:"INFO"){
" Streanfl ow' "FI NEST"

}
}

Now the default log level for all model componentsis set to INFO, StreamFlow has the most verbose log level.
nodel (cl assnane: "ny. nodel ") {

| ogging (all:"OFF")

Thelogging element aboveturns off al logging for the wholemodel. In such aconfiguration, even severe problems
within components are not reported. This statement should be used with care.

Specification
Name | oggi ng - assigns log levels to components
Properties Name Description Value Required
al | Thebaselog level for|' oFF, ' SEVERE' , |N (default: WARNI NG)
al components in the|' WARNI NG , "IN
model. FO , ' CONFI G,
"FINE, 'FINER,
' FI NEST'
Sub-elements Name Description Type Default Occurrences
<conp nane>|single compo-|<String> - *
<l og | evel > nent log level ['OFF', 'SE
VERE' , 'WARN
ING , "IN
FO, 'CONFIG ,
"FINE, 'FIN
ER, 'FINEST']
Parent(s) model
Notes « If there is no logging element with a model element, all components will default to the
WARNI NG level.

2.2.3.1. Setting up logging in a component

To usethe logging features within a simulation as described in the previous section, the component has to be setup
properly. It has to obtain and use alogger object:

Usually, the logger object is obtained as a static reference somewhere in the declaration part of a component:

import java.util.logging.*; /1 1.

public class Ddsol rad {

31

Simulations

static final Logger log =
Logger . get Logger ("onms3. nodel . " + Ddsol rad. cl ass. get Si npl eNanme()); //2.

@Execut e

public void exec() {

if (log.isLoggabl e(Level.INFO) { Il 3.
| og.info("Solrad " + basin_potsw); /1 4.
}
}

}...

. Import the logging classes from thej ava. uti | package.

. Obtain the logger using the Logger . get Logger () call. Declare this reference st at i ¢ to share it across al
instances of thisclassand f i nal to make it aconstant. The argument must start with the String "oms3.model ."
and must to end with the component's simple class name. Use get Cl assNane() as shown above to obtain this
name from the class, instead if manually adding this to the logger name String. Refactoring tools will respect
this and will change the logger name properly if needed.

. At any location within the component methods the logger can be used. As shown above, 'guarded logging' is
recommended. It is a pattern that checksto seeif alog statement will result in output before it is executed. This
will reduce the memory fragmentation and garbage collection by avoiding the creation of unnecessary strings
if log levels are disabled. The statement here checks if logging is enabled at the | NFOlevel and above.

. The statement issuesthe logging message at the'l NFO level. Usethe methodsser ver e() , war ni ng() ,i nfo(),
config(),fine(),finer(),andfinest() accordingly.

The use of Logging in component provides great flexibility for diagnostics and messaging, that is efficient and
configurable from within a simulation.

2.3. Simulation Output Strategy (outputstrategy)

A simulation usually produces output files such as times series predicted runoff, sediment yield, etc. The out put -
strat egy element of a simulation manages the storage of the output based on different strategies. However it
does not manage the files or the values them self. It provides for a consistent method and strategy dealing with
subsequent simulations.

An example simulation might use a output element:

sb = new ons3. Si nBui | der ()
sbh. si m{ nane: " Si npl eMbdel ") {

outputstrategy(dir:"c:/tnmp/out", schenme: NUVBERED)

/1 define the nodel

nmodel (cl assnane: "t w. Thor nt hwai te") {
/| add paraneter
parameter {

climateFile "c:/od/projects/ngnf.nodels/src/tw climte.cst"

}

}

}

The types of supported output strategy schemes are:

SIMPLE The simulation creates a folder to hold the model output files. Each new simulation run will over-

write existing files with the same name. The simulation output folder is aways:

<out put dir> + <si m nane>

32

Simulations

For the exampl e above the output would always go into “c: / t np/ out / Si npl eMobdel "

NUM- The simulation creates a new folder for each ssmulation run. A new simulation will not overwrite
BERED the output from the previous one. The last ssmulation aways has the highest number folder. The
simulation output folder is:

<out put dir> + <simnane> + <sinulation run nunber>
For the example above the output of the 5th run would go into "c: / t np/ out / Si npl eMbdel / 0005"

TIME The simulation creates a new folder for each simulation run. A new simulation will not overwrite
the output from the previous one. The last simulation output is awaysin the folder named with the
simulation start time. The simulation output folder is:

<out put dir> + <simnanme> + <sinulation start time>

For the example above the output a run would go into “c:/tmp/out/
Si mpl eModel / 2009- 04- 05T12: 04"

In the future there might be more strategies for output handling.

Specification
Name out put - describes simulation output management
Properties Name Description Type Required
dir the output base dir,|String N (default:
must exist. java.tnp.dir)
strategy the output strategy to|' SIMPLE: | ' NUM [N (default: SI MPLE)
be used for this simu-|BERED | ' TI ME
lation
Parent(s) si mu
Notes « If thereisno output specified in sim, the defaults for both, dir and strategy apply.

* The output strategies are defined in ons3. Si nConst ant s

« Output strategy cannot be combined.

2.4. Model Efficiencies (efficiency)

Model efficienciesare commonly used to quantify the prediction performance of asimulation model by computing
some aggregate based on observed and simulated values of the same model property.

Several moded efficiencies are available, see table below.

Table4.4. Efficiencies

Name (KEY) Description Equation
ABSDI F Absolute difference "0, 5O
ABSDIF = Z Q—
e L
LOGABSDI F Log of the absolute difference

m
LogABSDIF=} " [InQ, -nQ,

©

NS Nash-Sutcliffe

33

Simulations

Name (KEY) Description Equation
LOGNS Log of Nash-Sutcliffe B ZZ 1|1th,0_1th,s|
LogNS= -7
2, [nQ, ;nQ/
LOGNS2 Log of Nash-Sutcliffe (Pow 2) 2
Lot 7 Eolneua)
zt—l(ant o -InQ)
| OA Index of Agreement OA—] Zi: 1|Qi,o'Qi,s|
- - m
Zi: I‘Qi,S_Q(J—HQi,O_Q(J
| OA2 Index of Agreement (Pow 2) m 2
10 AZ 7 Zi: I(Qi,o'Qi,s)
— 2 2
zi: 1(Qi,s_Qo) +(Qi,o_Qo)
R2 Goodness of fit
R2 _ ZT: I(XZ_XXYZ_Y))
- 2 2
JZ: 1(X’_X) \,Z:l: 1(Y')
GRAD Linear Regression Gradient ' (Xr X)(Yl Y)
GRAD=-"L >
Zi= 1(XI-X)
VR2 Weighted Correlation Coefficient , GRAD|R2 GRAD<=1
WR* =
‘GR AT R’, GRAD>1
DSGRAD Double Sum Analysis Gradient [TBD]
AVE Absolute Volume Error _N
AVE = Ei:1Qi s Qi,J
RVSE Root Mean Square Error
RMSE = \/— (o0,-0)
PBI AS Percent BIAS
cen Y (000
PBIAS = 100———>—=
Zl_ lQi o
PMCC Pearson product-moment correla- P (XYY -Y)
tion coefficient PMCC= =
Rl o i
TRVSE Transformed Root Mean Square Er- m 2
o TRMSE = \/%Zt: (zs-2)
S (1+§)i-1
ROCE Runoff Coefficient E
unoff Coefficient Error ROCE = % %

The simulation below shows the use of the efficiency element in a simulation. Multiple efficiencies can be com-

puted at once. Just combine those by using the '+' operator as shown.

si m(nane: " Ef carson") {
/1 define the nodel
nmodel (cl assnane: "nodel . PrnsDdJh") {

/1 ... paraneter here
ef ficiency(obs: "runoff[0]",

sim"basi n_cfs", nethods: NS+tNS2+ABSDI F+TRVSE)

}

Simulations

Executing the simulation will produce additional table output for the requested efficiencies:

Ef fici enci es nsl ns2 absdi f trnse
runof f/ basi n_cfs 0. 66512 0. 82971 764.30044 2. 44043

Specification
Name ef fi ci ency - model efficiency computation
Properties Name Description Type Required
obs aoutput field that pro-| String Y
vides observed values
sim aoutput field that pro-| String Y
vides simulated values
precip precipitation values | String Y (only for ROCE, ig-
nored otherwise)
met hod efficiency method(s) [KEYs (can be com-|Y
to compute bined)
file the output file String N (if missing output
goes to the console,
otherwise to the speci-
fied file located in the
output folder.)
Parent(s) sim
Notes » Multiple keys can be combined using the + operator, the output will be a combined table.

« Multiple efficiencies can use the same file for output. They get appended.

2.5. Summary Output (surrmary)

The summary element provides ad-hoc statistics for selected model (state) variables. This element is a part of a
simulation. Statistical moments are computed over an aggregation period that can be selected. The period can be
daily, weekly, monthly, yearly, or the entire simulation. A summary is always specified for one variable at atime.
That variable must be output of one component in the model.

The examples below shows the use of the summary element within the 'si npl eMbdel ' simulation.

si m(nane: " Si npl eMbdel ") {

/1 define the nodel
nmodel (cl assnane: "tw. Thornt hwai te") {

}

sunmary(tine:"time", var:"basin_ro", statistics: MAX, file:stats.txt)
}

The maximum value of the output variable basin_ro gets computed over the total simulation period, and the output
will be stored in the file stats.txt, located in the simulation run output folder.

si m(nane: " Si npl eModel ") {

/| define the nodel
nmodel (cl assnane: "t w. Thor nt hwai te") {

}
summary(time: "time", var:"runoff[4]", statistics: MVEAN*M N+LAGL, peri od: YEARLY)

35

Simulations

}

The runoff array element #4 will be aggregated over one year and its minimum, mean and autocorrelation will
be printed to the console.

Table4.5. Statistical Moments

Moment Description
VEAN MEAN=%Y" x,
MAX MAX= maxl(x,-)
MN MIN = minx,)
COUNT COUNT = countx;
RANGE RANGE = maxl-(xl-) -minx,)
MEDI AN Y (N+1)/2 Jf N is odd

MED =

/ o
E(YN/2+ Yinj) SN is even

STDDEV N 2
SD = \/%Zizl X;-x)

VAR 1N 2
VAR=72._(x;-x)
MEANDEV 1NN
MD= ﬁzizll'xi - Xi
N
StV suM=3" x,
N
PRCD PROD =[] x;
QL First Quartile [Thd]
@ Second Quartile (MEDIAN) [TBD]
@ Third Quartile [TBD]
LAGL LAG-1 autocorrelation [TBD]
Specification
Name summary - ad-hoc summary statistics
Properties Name Description Type Required
time the time field to be|String Y
used to compute the
aggregation period
var aoutput field that pro-| String Y
vides the values
statistics Statisticalk moment(s) | Satistical Moments| Y
to compute KEY
period aggregation period DALY | EEKLY' ||N (defaultsto 'TOTAL")
'MONTHLY' | 'YEARLY' |
'TOTAL'
file the output file String N (if missing output
goes to the console,
otherwise to the speci-

36

Simulations

Name Description Type Required
fied file located in the
output folder.)
Parent(s) sim
Notes « Multiplekeysfor statistics can be combined using the + operator, the output will be acombined
table.

» Multiple statistics can use the same file for output. They get appended.
» Aggregation periods cannot be combined.

» Variable names may refer to scalars or array elements using the Java style (e.g. 2D array
element: ro[1][0])

2.6. Dynamic Output (output)

Optional to asimulation, the output element can be used to capture and store output field valuesin an CSV output
file. Thisisan alternative to a component-based solution, where the a dedicated output component is aintegrated
part of the model. Both approaches do have pro and cons.

Model output component Pros - Can write to any data store; essential model feature, hight perfor-
mance

Cons - No ad-hoc change of output variables, change needs model recom-
pilation.

Simulation output element Pros- Output variables can be changed or disabled altogether without mod-
e recompilation, very flexible. Well suited for component output ad-hoc
inspection

Cons- Slower in performance that dedicated output component. Only CSV
data file output supported for the output element

Note that both types of output definition can co-exist in one simulation.
The examples below show the use of the output e ement within a simulation.

si m(nane: " Ef carson") {
/1 ...Efficiencies
nmodel (cl assnane: " prnms2008. PrmsDdJh") {
I
}
output(tinme:"date", vars:"basin_gwflow cfs, basin_cfs,runoff[0]",
fformat="7.3f", file:"outl.csv")
/1

}

The output is driven by dat e, an out field in the model. The variables to be captured in an output file called
‘out 1. csv' arelisted in vars. Note that an array element r unof [0] isapart of this. The numerical output format
for floating point variablesis"7. 3f " (7 digitstotal, 3 decimal rounding). The output file gets stored to the output
folder asdefined in out put st r at egy. For the configuration above it will have the following content:

@, "Efcarson"

Created, "Tue Sep 15 14:31:36 MDT 2009"

@4, date, basin_gwflow cfs, basin_cfs, runoff[O0]
Type, Date, Double, Double, Double

, 1980-10- 01 12: 00: 00, 116. 453, 116. 453, 84. 000
, 1980-10-02 12: 00: 00, 114. 974, 117. 640, 82. 000
, 1980-10- 03 12: 00: 00, 113. 514, 113. 514, 80. 000
, 1980-10- 04 12: 00: 00, 112. 072, 112. 072, 80. 000
, 1980-10- 05 12: 00: 00, 110. 649, 110. 649, 80. 000

37

Simulations

Note: The name of the simulation will be used as table name (EFcarson).

Specification
Name out put - simulation defined output
Properties Name Description Type Required
time the time field to be|String Y
used to trigger output
on atime change.
vars a list of output fields|String, (field names|Y (at least one field
that provides the val-|separated by ',', ";', or :'| name)
ues on each time step
ffor mat format for floating|String N (default '10.3)
point values
df or mat format for integer val-| String N (default '10")
ues
file the output file String N (if missing output
goes to the console,
otherwise to the speci-
fied file located in the
output folder.)
Parent(s) sim
Notes « If multiple output elements are used, each should have its own unique file name. It is also

recommended to use afile for output when specifying multiple outputs in a simulation.

2.7. Analysis (analysis)

An analysis elements provides for post run analysis by means of plotting/graphing features. It is an optional part
of asimulation. Performing an analysis will usually result in graphs. The following basic types of analysis plots
are available

e Time seriesplots

* Flow duration plots

» Scatter plots

In addition for Ensemble Streamflow Prediction:

» Esptrace anaysisplots

An analysis can contain any number of those plots as sub-elements as shown below.

si m(nane: " Ef carson") {
anal ysi s(title:"Simulation Output”) {
tsplot(title:"East Fork Carson") {

x(file:"%ast/outl. csv", colum:"date")
y(file:"% ast/outl.csv', colum:"basin_cfs")

y(file:"% ast/outl.csv', colum:"runoff[0]")

}
tsplot(title:"Error") {
x(file:"%ast/outl.csv", colum:"date")

38

Simulations

expr(eq:"sim- obs") {
sim(file:"%ast/outl.csv", colum:"basin_cfs")
obs(file:"%ast/outl.csv', colum:"runoff[0]")
}
expr(eq:"sim- obs", acc:true) {
sim(file:"%ast/outl.csv", colum:"basin_cfs")
obs(file:"%ast/outl.csv', colum:"runoff[0]")
}
}
fl owduration {
y(file:"% ast/outl.csv', colum:"basin_cfs")
y(file:"%ast/outl.csv", colum:"runoff[0]")
}
scatterpl ot {
x(file:"%ast/outl.csv", colum:"basin_cfs")
y(file:"%ast/outl.csv", colum:"runoff[0]")

}

The configuration as shown above will result in output graphs as showed in Figure ???. The whole analysis will
appear as a separate window, each plot will have its own tab and graph. The Figure ??? actually shows the same
window with different tab being activated.

Figure4.1. Example Analysis

(-]

=

Flaw Dura tian

There are some general rulesfor referencing data setsthat apply to all analysistypes as described in the following
sub-sections.

2.7.1. Referencing data sets
All plotsarereferencing data setsthat are stored as CSV tabular data. To identify acolumna(i) filename, (ii) table

name, and (iii) column name have to be provided. However, the analysis can handle some shortcuts in context of
the simulation. There are some examples:

39

Simulations

x(file:"c:/tnp/SI M0003/out1.csv", table"efc", columm:"runoff")

A column isreferenced fully by itsfile, table, and column name. The file name is absolute.

x(file:"c:/tnmp/SIM % ast/out 1. csv"', table"efc", colum:"runoff")

A columnis referenced fully by itsfile, table, and column name. The file name is absol ute but references the last
simulation run. The meaning of 'last' depends on the chosen output strategy.

x(file:"%ast/outl.csv", table"efc", colum:"runoff")

Now thefile referenceisin context to the simulation. It pointsto afilein the last output folder for this simulation.

x(file:"%ast/outl.csv", colum:"runoff")

If the table name is not provided, the name of the simulation is assumed. The last variant is preferred, since it
provides the most flexibility for referencing data path independent.

OMS3 defines 3 'variables' to refer to s simulation run context. They can beusedin afi | e value as shown above.
Note, that for a sl MPLE output strategy, they all refer to the same output folder.

% i rst The first ssimulation output in this run sequence. (For numbered outputs is the folder with the
lowest number, for timed output the oldest simulation time)

%r evi ous The previous previous simulation output in this run sequence. (For numbered output this is the
folder with the highest number - 1, for timed output the second recent simulation time)

% ast Thelast simulation output in this sequence (For numbered output thisisthe folder with the highest
number, for timed output the most recent simulation time)

Using those variables has several benefits. A analysis configuration needsto created once and can alwaysreference
the most recent output of a simulation after each run (use % ast). | addition, someone can always compare the
last run’s output with the previous output and analyse the effect of model parameter changes. In another scenario
amodeller might want to compare the last run’s output against a baseline data set, that is being referenced with a
full qualified absolute path name. Again, not analysisfile needs to be adjusted after eachrun. % i r st , %r evi ous,
and % ast are supporting therefore the modeller's work flow.

Specification
Name axis (x,y, ...) -column reference
Properties Name Description Type Required
file CSV filename String y
table table name. String n (default simulation
name)
col um column name. String y
Parent(s) timeseries, flowduration, scatter
Notes e They axis must be referencing a column with numerical values.

¢ Columns can have different number of rows.
2.7.2. Time Series

A simple time series plot can be configured using thet i meseri es element within an analysis. It takes one x sub
element referring to the time series column and a variable number of y elements for the data graphs.

anal ysis {
timeseries(title:"East Fork Carson") ({
x(file:"9%ast/outl. csv', colum:"date")

40

Simulations

y(file:"9%ast/outl.csv', colum:"basin_cfs")
y(file:"% ast/out2.csv", colum:"runoff[0]")

}
..

The exampl e above defines the x axis as the date column of the last run that produces outl.csv. Thetwoy data sets
(basin_cfs, and runoff[0]) are obtained from different files. Thevisual output might look like the screen shot bel ow.

Bl Simulation Dutput [es\odiprojectsioms 3.pr.prms 2008 output\Efcarson 002 3]

East Fork Carson |

East Fork Carson

- N L ik

|
| 1
1,000 14 | 1 L 3 gl
' |- il i L |
- i l VRN LN “L L T L
. i J‘J"..: '\._,_‘_,_r"-“. u .'“J‘_.. i kb % MM -L\AMJ--& .
L] 1582 1583 1984 1585 158
Drabe
Specification
Name timeseries -time serieschart
Properties Name Description Type Required
title chart title. String N
Sub elements Name Description Type Default Occurrences
X X axis, indepen-|Date column 1
dent var
y y axis value column +
Parent(s) anal ysi s
Notes e Thex axis must be referencing a column with dates.

¢ All columns must have the same number of rows.

2.7.3. Flow Duration

Flow duration isa plot showing the percentage of timethat stream flow islikely to equal or exceed some specified
value of interest. It can be used to show the percentage of timeriver flow can be expected to exceed adesign flow
of some specified value, or to show the discharge of the stream that occurs or is exceeded some percent of thetime.

41

Simulations

Within an analysis, thef | owdur at i on element allows the creation of such graphs. It takesy axis elements as sub
elements from which the flow duration gets computed.

anal ysis {
fl owduration {
y(file:"% ast/outl.csv"
y(file:"% ast/outl.csv"

col um: "basi n_cfs")
colum: "runof f[0] ")

}

This exampl e defines the flow duration with two graphs. The visual output is shown below.

bl Simulation Output [e\od\projectsioms 3. pri.prms 2008 wutprt\Efcarsonui0 3]
M ;,:u.lhq:r.

L
18
L7
1 &
i
1.4

Flow Duration

"R -
O

A flow duration curve is a plot of discharge vs. % of time that a particular discharge was equaled or exceeded.
The area under the flow duration curve (with arithmetic scales) givesthe average daily flow, and the median daily
flow isthe 50% value.

Specification

Name fl owduration - flow duration chart

Properties Name Description Type Required
title chart title. String

Sub elements Name Description Type Default Occurrences
y y axis value column +

Parent(s) anal ysi s

Notes e They axis must be referencing a column with numerical values.

* Columns can have different number of rows.

Simulations

2.7.4. Scatter

Scatter plots show the relationship between two variables by displaying data points on atwo-dimensional graph.
They are useful in the early stages of analysis when exploring data before actually calculating a correlation coeffi-
cient or fitting aregression curve. For example, a scatter plot can help oneto determine whether alinear regression
model is appropriate.

Thescat t er element of an analysis provides for an easy creation of a scatter plot:

anal ysis {
scatter {
x(file:"9% ast/outl.csv",
y(file:"9% ast/outl.csv",

}
..

Providex andy axisinformation accordingly. The setup aboveindicatesthe correl ation of asimulated and observed
property such as runoff

col um: "basi n_cfs")
col um: "runof f[0] ")

M simulation Output [cod\projectshoms 3. pri. prms 2008 wotput \Efcarsonh0023]

Scatter Plot
N l.
o -
L] u
4500 - L] L - L] B
n [} .
4
= . I is
= 3500 = | | | |]
? Ll L
E 2,00 m = = :l. L™ -
oK "F:. | =
g]
. u
. an o
1 =) 1,00 1,500 2000 = 5 3 00N 3,500 4,000 §, 500 5,000
basin_cfs
Name scatter - scatter plot
Properties Name Description Type Required
title chart title. String
Sub elements Name Description Type Default Occurrences
X x axisvariable |value column 1
y y axisvariable |vaue column 1
Parent(s) anal ysi s
Notes e Thex andy axis must be referencing a column with numerical values.

* Columns must have the same number of rows.

43

Simulations

2.7.5. Computed Ad-hoc graphs

The previous examples are fully based on column data obtained from data files. However sometimes an derived
data set should be used instead on an ad-hoc base, for example to plot the sum of the difference of two data sets
without creating computing this value in the model or manipulate the date sets with other tools. Another example
would be the ad-hoc creation of mass balance term.

Thecal ¢ element wasintroduced to support the creation of arbitrary derived data setsfor al analysistypes above.
It allows the specification of an user defined equation, that operates on al elements of data columns. An example:

anal ysis {
tineseries(title:"Error") {
x(file:"%ast/outl.csv', colum:"date")

calc(eq:"sim- obs") {
sinm(file:"%ast/outl.csv", colum:"basin_cfs")
obs(file:"%ast/outl.csv", colum:"runoff[0]")

_—

Thecal ¢ element in the example aboveis used asy axis. It hastwo major partsthat relate to each other. First, the
eq attribute takes a user defined term as string argument, in this case: "si m - obs". The names are user defined,
and they have to match the names that are used for column data that is enclosed in thecal ¢ element. "sin(...),
and 'obs(. ..)" are two definitions of data columns with arbitrary names. As arule: Any name being used in eq
should occur as element within cal ¢. Any complex term can be created in eq and cal ¢ can contain an arbitrary
number of column references. As aresult, theti meseri es plot will have the element-wise diff of basin_cfs and
runoff shown asy axis.

Date

[Equation ‘am - obs Equation ‘sm - obs’ (acourmudated

The graph above shows two calculated data sets. The second definition accumulates the calculated value of an
element over the data set. The accu flagis set to true.

anal ysis {
timeseries(title:"Error") {
x(file:"%ast/outl. csv", colum:"date")
calc(eq:"sim- obs") {
sim(file:"%ast/outl.csv", colum:"basin_cfs")
obs(file:"%ast/outl.csv', colum:"runoff[0]")

Simulations

}

calc(eq:"sim- obs", acc:true) {
sim(file:"%ast/outl.csv", colum:"basin_cfs")
obs(file:"%ast/outl.csv", colum:"runoff[0]")

}
}
}
Specification
Name cal ¢ - calculate data sets ad-hoc
Properties Name Description Type Required
title chart title. String n
eq the equation String y
Sub elements Name Description Type Default Occurrences
<nane> data set variable |value column +
Parent(s) timeseries, scatter, flowduration
Notes « The sub elements must be referencing a column with numerical values.

¢ Columns must have the same number of rows.

¢ names for sub elements must be unique.

3. Basic Simulation (sim)

A standard simulation is the basic method to setup and run amodel. It is being created using the si melement of
the si mBui | der class. Define the package name and list imported packages as shown below first. The package
ons3 contains Si nmBui | der and needs to be imported at a minimum (1).

si m(nane: " Si npl eTWvbdel for EF') {
/| define the nodel
nmodel (cl assnane: "tw. Thornt hwai te") {
/'l add paraneter
paraneter {
climateFile "c:/od/projects/ngnf.nodels/src/tw climte.cst"

outputFile "output.csv"
runof f Factor 0.5

| atitude 35.0

sncap 200.0

Line(2) createsthe si mBui | der object that isbeing used in (3) to construct the simulation type. (Other simulations
as described in the following sections are using different names here. The si mobject has the property nane to
identify it and its purpose. In general properties are key/value pairs, separated by colons. Multiple properties are
separated by comma, all properties are embedded in parenthesis following the model.

Specification
Name si m- defines a basic simulation.
Properties Name Description Type Required
name the name of the simu- | String Y
lation

45

Simulations

Sub elements

Notes

Name Description Type Default Occurrences 1)
model the model to exe- |n/a 1
cute
outputstrate- |output manage-|n/a Standardout- |?
gy ment put
efficiency model efficien-|n/a *

cies to be
computed during
simulation

sunmary statistics summa- | n/a *
ry to be comput-
ed during smula-

tion
resource simulation re-|n/a *
source definition
anal ysi s post run analysis |n/a 1
[TBD]

4. Ensemble Streamflow Prediction (esp)

ESPisasimulation type for Ensemble Streamflow Prediction. It implementsis a modified version of the National
Weather Service's ESP procedure (Day, 1985). ESP uses historic or synthesized meteorological data as an ana-
logue for the future. These time series are used as model input to simulate future conditions.

The typical application of ESP is streamflow forecasting . The initial hydrological conditions of a watershed, for
the start of a forecast period, are assumed to be those simulated by the model for that point in time. Typically,
multiple hydrographs are simulated from this point in time forward, one for each year of available historic data.
For each simulated hydrograph, the model is re-initialized using the watershed conditions at the starting point
of the forecast period. The forecast period can vary from a few days to an entire year. A frequency analysisis
then performed on the peaks and/or volumes of the simulated hydrograph traces to evaluate their probabilities

of exceedance.

Initialization Period

Forecasting Period

Historical Years

Provide astart and end timefor ESPinitiaization. Thisis period over which the
model will be run prior to the forecast period. It should be long enough to run
the model through one or more wetting and drying cycles.

Provide the end date for your forecasting period. (Note: The start date for the
forecasting period follows the end date of the initialization period.)

Provide the historical yearsto be used for forecasting traces.

Model parameter files Provide al the parameter files for the model. One of those files must have the

ESP property set and content as described in the next section.

esp(nane: "EFCarson") {

/| define output strategy: output base dir and
/'l the strategy NUMBERED| SI MPLE| DATE
out putstrategy(dir: "$work/output", schenme: NUVBERED)

/] for class |oading: npbdel |ocation
resource "$work/dist/*.jar"

/] define nodel
nmodel (cl assnane: "nodel . PrnsDdJh") {

46

Simulations

/| paraneter
paraneter (file:"$work/ data/efcarson/parans.csv") {
inputFile "$work/datalefcarson/data.csv"

outFile "out.csv"
sunFil e "basi nsum csv"
out "summary. txt"

startTi ne "1983-10-01"
endTi ne "1984- 09- 30"

}

/I nunber of forecast days
f orecast _days 15

/1 historical years for to be used for traces
/] years are inclusive

first_year 1981

| ast _year 1983

}
Specification
Name esp - defines a Ensemble Streamflow Prediction (ESP) simulation.
Properties Name Description Type Required
name the name of the simu- | String Y
lation
Sub elements Name Description Type Default Occurrences
model the model to exe- |- 1
cute
out putstrate- |output manage-|- Standardout- |?
gy ment put
resource simulation re-|- *
source definition
forecast_days |number of fore-|int - 1 (if
cast days forecast_days
not provided)
forecast _end |forecasting end|ISO Date String 1 (if
date forecast_days
not provided)
first_year first historical |int - 1
year
| ast _year |ast historical |int - 1
year
Notes « Either the forcast_days or forecast_end has to be provided, if both are missing or both are

provided an error message will be given and the simulation stops.

[TBD]

4.1. ESP Trace Analysis

The ESP procedure uses historical meteorological data to represent future meteorological data. Alternative as-
sumptions about future meteorological conditions can be made with the use of synthesized meteorological data.

47

Simulations

A few options are available in applying the frequency analysis. One option assumes that al yearsin the historic
database have an equally likely probability of occurrence. This give equal weight to all years. Y ears associated
with El Nino, La Nina, ENSO neutral, Pacific Decadal Oscillation (PDO) less than -0.5, PDO greater than 0.5,
and PDO neutral have also been identified in the ESP procedure, and the years in these groups can be extracted
separately for analysis. Alternative schemes for weighting user-defined periods, based on user assumptions or a
priori information, are also being investigated.

[TBD] ...

Figure4.2. ESP trace analysis

1 Trace anabysis [c:odprofectsomes 3. proprma 208 ot put \YampaStmBa 0004 |
-
ey EECT - o< oot e o). om0 e i T peepa B 0 e oy Repart |

Sy

= 2 . basin_cfs
(=) Vohume | Ppak () Tear -

1591 [sF= LidmP= 5] A

Flow

196 (B0 B0 deriPm 80,04
197 [acF= 1) dmis 5.0
1 Db 64 T deiiim K5

b 2030301

-
oo 0505481

005 15 Fet Ma ITMa LA f
hnstvss WEHEH) = [hate

wsoam | | oM — 1w 17 16— 1977 1% 1991 — 1997 — 19l — 199

Thetrace analysisis apart if the analysis element, and is simple to configure.

esp(nane: "Yanpa") {
anal ysis(title:"Trace anal ysis") {

/1 relative path nane, |ast output
esptraces(title:"yanpa", dir:"%ast", var:"basin_cfs")

}
}
Name espt races - analysis an ensemble run.
Properties Name Description Type Required
title thetitle of the graph | String n
dir the esp output directo-| String y

ry, containing all the
trace outputs and the
file'resul t.csv'.

var thevariabletotrace | String y

48

Simulations

Notes . .

4.2. References

Day, G.N., Extended streamflow forecasting using NWSRFS: J. Water Resour. Plan. and Manag. Am. Soc. Civ.
Eng., 111, 157, 1985.

5. Luca Calibration (i uca)

Luca (Let us calibrate) is amultiple-objective, stepwise, automated procedure for model calibration. The calibra-
tion procedure uses the Shuffled Complex Evolution global search algorithm to calibrate any OM S3 model. Luca
defines a OM S simulation type for building and performing a procedure to calibrate parameters for a (hydrologi-
cal) model. It integrates the following components:

e Multiple-objective, step-wise calibration

 Shuffled Complex Evolution (SCE), a global-search parameter optimization; and

* OMS model interoperability.

5.1. Shuffled Complex Evolution (SCE)

The purpose of Shuffled Complex Evolution (SCE) is to calibrate model parameters so that the model, which
requires those parameters, gives better results. SCE consists of the following steps:

1

Generating points. The set of parametersto be calibrated is considered asapoint in N dimension space where
N isthe number of parameters. SCE generates many points, in which each parameter has arandom value within
its lower and upper bound values.

. Assigning criterion values. The model is run with every point (a set of parameters) generated in SCE Step 1

as an input. An objective function that determines how close the simulation results are to observed values is
used to calculate a criterion value for each point.

. Creating complexes. The points are divided into smaller groups called complexes such that points of good and

bad criterion values are equally distributed.

. Complex evolution. Each complex isevolved in the following way: Several points are selected from the com-

plex to construct a sub-complex. In the sub-complex, a new point is generated, and a point that has abad crite-
rion valueis replaced with this new point. This evolution step is repeated several times with different random
pointsin a sub-complex.

. Combining complexes. All pointsin the complexes are combined together to be one group.

. SCE Steps (3) — (5) are called a shuffling loop. It is repeated until the results of the complex evolution meet

one of the following end conditions:
» The number of model executions reaches the maximum number of model execution

» The percent changein the best criterion value of the current shuffling loop and that of several shuffling loops
before is less than a specified percentage.

The points converge into a very small region, which is less than 0.1% of the space within the lower and upper
bounds of parameters. The number of complexesused in SCE Step 3 decreases by 1 for every shuffling loop. This
decrease stops when the number of complexes reaches the minimum number of complex required. The output
is the parameter file containing the point (a parameter set) that has the best criterion value.

49

Simulations

Luca Rounds and Steps

Figure 4.3. Rounds and Stepsin Luca

Rounds

Steps

-

Step 1

Step 2

Stepn

Round1

Round 2

End

Round n

In the multi-step calibration technique, a step and around are defined as follows:

Steps
Rounds

[TBD]

Specification - I uca{ }

Name

Properties

Sub elements

A round consists of one or more steps.

| uca - defines a Luca calibration simulation.

A step is associated with a parameter set, which contains one or more parameter values.

Name Description Type Required
nane the name of the simu-| String \
lation
Name Description Type Default Occurrences
model the model to exe- | model {} 1
cute

out putstrate- |output manage-|outputstrategy {} |St andardout- |?

ay ment put

resource simulation re-|model {} *

source definition

50

Simulations

Notes

Specification - st ep{ }

Name

Properties

Sub elements

Notes

Name

Properties

Sub elements

Notes

Name Description Type Default Occurrences
cal i brati on_st astart date of cali-|1SODate String |- 1
bration
rounds number of |int 1 ?
rounds
step calibration step|step {} - +
definition
st ep - defines asingle Luca calibration step.
Name Description Type Required
nanme the name of the step | String
Name Description Type Default Occurrences
par anet er parameter to cal-|- - 1
ibrate
optinization |optimization def-|- - 1
inition
max_exec maximum # ex-|int 10000 ?
ecutions in one
step
init_conpl exes int - ?
poi nt s_per _conpl ex int - ?
poi nt s_per _sub¢onpl ex int - ?
evol utions int - ?
mi n_conpl exes int - ?
shuffling_|l oops int 5 ?
of _percent age double 0.01 ?
« If the name of the step ismissing, it will be numbered instead.
opti ni zati on - defines optimization parameter.
Name Description Type Required
si mul at ed the simulated variable| String
name
obser ved the observed variable| String
name
Name Description Type Default Occurrences
of objective func-|of {} - +

tion definition

51

Simulations

Name

Properties

Notes

of - defines an objective function.

Name Description Type Required
met hod the objective function |NS|RMVSE|ABSDI F|LO- |y
GABSDI F | Pvoc Y
timestep the time step for simu- | DAI LY n (default: DAI LY)
lated and observed val-
ues

wei ght

the objective function
weight

double(0 - 1.0)

2)

« If the method name is not one of the constants above, it is assumed to be the name of a
user defined Javaclassthat (i) implementstheons3. Qbj ecti veFunct i on interface, and (ii) is
available on the CLASSPATH. Thiswas amodeler can implement custom objective function(s)

and use the in asimulation.

2)

weights sum up to 1. 0 for al objective functions.

Specification - step

Name

Properties

Notes

5.2. References

par amet er - defines model parameter to calibrate

If the weight is not specified, all provided objective functions will be equally weighted.
If specified, it has to be specified for all objective functions. The user has to ensure that the

Name Description Type Required
| ower the lower boundary | double y
upper the upper boundary | double y
strategy the calibration strategy | MEAN | VALUES | BI NARY | n (default: MEAN)

¢ Only MEAN isimplemented at the moment.

SCE Related Papers

Duan, Q., Sorooshian, S. and Gupta, V.K., (1992). Effective and efficient global optimization for conceptual

rainfall-runoff models. Water Resources Research 28 (4), 1015-1031.

Duan, Q., Sorooshian, S. and Gupta, V.K., (1993). A Shuffled Complex Evolution approach for effective and

efficient global minimization. J. of Optimization Theory and its Applications, 76 (3), 501-521.

Duan, Q., Sorooshian, S. and Gupta, V.K., (1994). Optimal use of the SCE-UA global optimization method for

calibrating watershed models. Journal of Hydrology, 158 265-284

Step-Wise, Multiple-Objectiveu Calibration Related Papers

Hay, L.E., Leavedey, G.H., Clark, M.P., Markstrom, S.L., Viger, R.J., and Umemoto, M. (2006). Step-wise,
multiple-objective calibration of a hydrological model for a snowmelt-dominated basin. Journal of the American

Water Resources Association.

52

Simulations

Hay, L.E., Leavedey, G.H., and Clark, M.P., (2006). Use of Remotely-Sensed Snow Covered Areain Watershed
Model Calibration for the Sprague River, Oregon. Joint 8th Federal Interagency Sedimentation Conference and
3rd Federal Interagency Hydrologic Modeling Conference, Reno, Nevada, April, 2006.

Others

Leavesey, G.H.and L.G. Stannard, (1995). The precipitation-runoff modeling system- PRMS. In: Computer Mod-
els of Watershed Hydrology, Water Resources Publications, Highlands Ranch, CO, edited by V.P Singh, Chapter
9, 281-310.

Leavesley, G.H., Restrepo, P.J., Markstrom, S.L., Dixon, M., and Stannard, L.G., (1996). The modular modeling
system - MMS: User's manual: U.S. Geological Survey Open File Report 96-151, 200 p.

6. Automated Model and Component Testing (rest)

[TBD]

53

Chapter 5. The Modeling Console

The OMS3 Modeling Consoleisagraphical user interface for the OM S3 Modeling Framework. It providessimple
accessto framework core features such as simulation management, output analysis, or documentation generation.
Using the OM S3 Console is one way to interact with the framework. Others methods are the integration of OMS3
into Integrated Devel opment Environments (IDEs) or custom applications for model applications. The main pur-
pose of the OMS3 Console is to alow a modeller a straightforward and simple tool to develop aa model and a
simulation, run the simulation, provide for parameter editing and offer ad-hoc post run analysis and visualization.
Figure ??2? provides an overview of the OMS3 Console.

Figure5.1. The OM S3 Console

<4 wleesp - OMS3 Console

File Help

Toolbar, 7 SimulationTabs e Birectory

o & = Ll wEag OF F
Toolbar:-:

Editor

Console Output

sdect fodiprojetsionmd pr. pro 108 simulacon/elcanonelc. ep =
Status Line

The console can be started directly from the OMS download site at ht t p: / / ons. j avaf or ge. com by clicking the
Launch button. It is provided as a Java Webstart application that integrates itself into the client's desktop after
installation. Asthe only prerequisite, auser is required to install the JDK version 1.6 or greater on the client.

The OMS3 Console is a self signed Webstart application. On initial launch it will prompt the user to run the
console, even without certificate validation. Accept this and click on Run the console anyway.

The Console's principa user interface is shown in Figure ???. Many of the user interface elements operate as
known from many other applications (File|Open, File | Save, ...), the specific console user interface elements are
highlighted in Figure ?7?2?

Working Directory The working directory sets the base directory and system property onms3. wor k for a
simulation. It defines a workspace for the simulation. If this folder contains the file
ons3. conf , its content gets loaded and applied for al simulation. For exampleif the
file oms3.conf contains alist of open files, they will be opened after setting this direc-
tory. The directory can be set using the button next to the directory name.

Simulation tabs Each tab contains one simulation script, tool bar, and associated console output. The
console might have multiple simulations open at one time, however they must origi-
nate from the same workspace. Each simulation tabs operates independent from each
other, means, you can execute one simulation, while editing another one in adifferent
tab.

Toolbars The console has two tool bars. A global tool bar manages a set of simulations. In
addition, each simulation has its own tool bar, allowing for different operations such
asexecuting, documenting, etc asimulation. Thetool bar action are explained in detail
below.

The Modeling Console

Editor The simulation editor allows creating and editing asimulation file.

Console Output This read/only output area, shows all standard and error output from the simulation
run.

Status Line Some informative message during console use.

Each simulation tab containsits own private tool bar (Figure ???). Thetool bar actions are always directed towards
the current simulation script in the editor

Figure5.2. Tool Bars

w

N o o &

0.

sl efc.esp - OM53 Console ST ®
File Help

125

efc.sim| efcluca efcesp

Waorking Diréctony: fod/projects/oms3. prj.prrms 2008

| @ o] & BB B Logging OFF v
4 5 6 7 8 91011 121

. Creates anew, empty simulation.
. Opens an existing simulation from <wor ki ng di r ect or y>/ si nul ati ons.

. Saves all open simulations.

Saves the script to afile. If thefileis new, it will prompt for aname.
Runs the simulation script.
Interrupts and stops a running simulation. If no simulation is running this button is disabled.

Opens the parameter editor with parameter being loaded from the current simulation. The parameter editor is
explained below.

Executes the anal ysi s part of asimulation. Thiswill usually result in an new window containing graphs and
plots. The analysis window is explained in more detail below.

Creates Dochook5 documentation of the simulation and stores it into the current output folder.

10.Creates a sHA digital signature of the simulation and prints the simulation fingerprint to the output window.

11.0pensthe last output folder using the operating system's file explorer.

12.Clears the console output for this simulation.

13.Logging setting. Define the log level here for your simulation, this will result in more or less verbose output

during simulation execution.

Each tab has a context menu that is accessible with aright mouse click. It allows saving, saving under a different
name, closing, and other operations with respect to the selected tab.

55

The Modeling Console

1. OMS3 Project Workspace

An OMS3 workspace is a recommended but not required directory layout. It is used to store and operate all
resources that belong to a simulation such as model components, climate data files, parameter files, simulations,
output data, documentation. It represents best practice file management and is result of many realized simulation
projects within OM S3. It also complements the folder layout of many Integrated Development Environments, so
an IDE and OM S3 can share the same project or working directories.

The working directory contains at least the folders as shown below with suggested content. This is sufficient to
use the mode! for simulation runs.

<Wor ki ng Directory>

| ons3. conf

+-- sinul ations (*.sim *.luca, *.esp, ...)
+-- data (*.csv)

+- - out put (*.csv)

+-- dist (*.jar, *.dll, *.exe)

The <working Directory> isthe root of the project workspace. In the console, it is being set using the user
interface. This folder name is passed to the simulation as a Java system property “ ons 3. wor k", that can be read
by the simulation and the model components. The directories have the following content and meaning:

si mul ati ons contains simulation files or other scripts. Simulation files execute a model with input data and
produce output. Simple simulations, or scripts for model calibration, uncertainty or sensitivity
analysis can be stored here.

dat a containsinput datato the model, usually climate dataor parameter sets. Thosefile canbe OMS3
csv datafiles or any other datafile format.

out put this folder will contain the simulation output data after each run. Usually it will have sub-
folders, that have the name of the simulation and further sub folders for each run if output is
versioned. See <out put st r at egy> for further details.

di st The dist folder contains all executable code for a simulation run. These are usually platform
independent componet/model *. j ar file(s), or platform dependent DLLs (*. dl |) or executa
bles (*. exe), and others.

All the folders above may have sub-foldersto store data/code that is for example organized by watershed or other
application area.

Itisrecommended that the project workspace containsthe fol dersas shown above. Thefolder organizethedifferent
file types of a project. The project root folder can contain the file ons3. conf .

The workspace can also accommodate for component code development. Add for example a source (sr ¢) folder
that will contain the component / model source files. The build process (e.g. managed by an IDE) will build the
executable and storeit inthe di st folder.

<Wor ki ng Directory>

| ons3. conf

+-- sinmul ati ons (*.sim *.luca, *.esp, ...)
+-- data (*.csv)

+- - out put (*.csv)

+-- dist (*.jar, *.dll, *.exe)

+-- src (*.java, *.f90, *.c, ..)

src Thesrcfolder contains sources, if the workspaceis also being used to devel op/test components and models.
Source files are Java files (*. j ava), FORTRAN files (*. for,..), or C/C++files(*.c, *cpp,...), just
to mention some examples.

In addition to the listed workspace folders, there can be other sub folders needed by IDEs and other development
tools. Note that of afolder name is case sensitive when used in a simulation script.

56

The Modeling Console

1.1. Workspace configuration file ‘ons3. cont'

The file oms3.conf is an optional file located in a project working directory. It can be used to provide for project
specific settings to be used by the OMS3 console. The console is usualy creating such a file when a working
directory is set. A user can aso edit thisfile and all custom setting for model execution. The file oms3.conf is a
text file that has "key-value-pairs" of configuration information, separated by lines.

ons3. conf Example:

#OVS3 Consol e Proj ect Configuration

#Mon Apr 09 10:11: 09 MDT 2010

open. fil es=sinmul ati on/ ef carson/ efc. si m simul ati on/ ef carson/ efc. esp
jvm opti ons=- Xn5128M - Xnx256M

The example above shows the some project settings. The entry open. fi | es lists al files relative to the working
directory that should be opened when the workspace is set in the console. The files names are separated by semi-
colon.

The entryj vm opt i ons contains as value additional optionsfor the VM to be used when executing a simulation.
This can be any valid VM argument. Usually this option tweaks memory provisioning for the simulation, or
garbage collection adjustments. The example above provides 128 MB of memory initialy to the simulation and
setsthe maximum available memory to 265 MB. Theentry j vm opt i ons should be managed manually by the user.

2. Parameter Editor

The Parameter Editor isavisual tool for parameter editing that is embedded in the OM S3 console. It can be started
by clicking on the appropriate button in the tool bar of a simulation tab. It allows for a presentation and filtering
of parameter values, bulk editing of values, statistics, and basic spread sheet like operations.

The editor works on parameter files that adhere to the OM S3 csv parameter file format. Such files can be easily
edited with other external tools such as Excel, however the parameter editor provides an easy to use interface to
mani pulate parameter values numericaly.

Note that only parameter files that are referencesin asimulation usingthe. . parameter(file:' <name>')
construct can be edited this way. Parameter that are in-lined within the parameter section cannot be presented
and edited here.

Figure5.3. Parameter Editor

= Parameter Efcarson

Type Filter
I Filern | <ALL> » File: | fodfprojems/oms 3, pri.prms 2008/ dataefcarson/params.csv ~
> Parancter Console, type "help’ for commands. ParameterFile -

Command Console

[Name Value
| 0 | adjmix_rain {5, 0. 6000000238419, CLEFAFAFIBE0TY, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5} .
1] albset_ma 0800000019209
2 | albsetmem 0.6000000238413
| 3 | albset_sna 0.0500000007 4506
| 4 | albzer snm 0. 2000000029202

5 | basin_area L] p
il basinsnts o Parameter Editar
| 7 | basin_tsta 2
|_B | carea_max {0 2000000029802, 0.2000000029802, 0.2000000029802, 0.2000000029802, 0.20000000298....
EX {5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0}

=

=/
|

{3.1,1,33,3330.0.33,33.3.3.3,0,0.0.0.1. 3}
{0.1000000014501, 0. 2000000025602, 0.2000000029802, 0.25, 0.25, 0.25, 0.3499959%40395...
00000014501, 0,2000000025802, 0.2000000029802, 0.25, 0.25, 0.25, 0.3499959940305...

=]

| 131 ddary_Intcp {-10.0, 1000, -10.0, -10.0, -10.0, -10.0, -90L0, 1000, -10.0, -10.0, -10.0, -10.0)

| 14| dday slope {0.4000000039E05, 0400000055605, 0.4000000059605, 0,2000000053605, 0.4D000000596...
15| den_inis 0,1000000014501

16 | den_max 0.5

| 17| dprst flag

=)

L]
dprst_pet_open {000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 00, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
el uriits (]
Emis_noppt 0.975000023841%

|

Fu
=

Ul

Aam A an s an A -

57

The Modeling Console

Figure ??? shows the Parameter Editor with parameter content. The layout of the window is organized asfollows.

Parameter File This combo box shows the active parameter file for editing. When opened it lists al pa-
rameter files as specifies in the simulation file. Changing the combo box selection will
cause the while view to change content.

Filter The Filter combo box allows to switch views on parameters. They can be filtered by dimension, by
scalars, or al parameter can be presented as sown in this figure. The selection change in this combo
box will cause the editor values to change.

Command Console The command line on this console alows the (bulk) manipulation of parameter data
shown below. This command line has a history, a help function and offers a powerful
method of editing parameter values. It is further explained below.

Parameter Editor This table shows the parameter names and values. The layout might change when dif-
ferent filter are applied. It hasin-place editing capabilities, by clickingon acell, it value
can be edited and changed.

Figure 5.4. Parameter Editor with applied filter

= Parameter Efcarson & &
& Filer| rhey » File:| Jodiprojectsfoms3.priprms 2008/ data el arson/params. csv

» Parancter Comsole, type 'help’ for conmands. “
e

Table Wiew (Filterfor ‘nhru’ dimensioned parameter)

COFea_... (oW type | covden .. covden .| dpestp.. ground.. | hnu_area | heu_dep.. hru_elev | hou_ger..
| 0 |0.20000... 3 00000, 0.10000.. 0.0 0.0 106500 1 5600.0 1 -
| 1 jo.20000.. 1 0.20000... |0.20000.. 0.0 0.0 5540.0 1 SB00.0 1
| 2 |0.20000... 1 0.20000... 0.20000.. 0.0 0.0 133400 1 7400.0 1
| 3 |0.20000... 3 025 0.25 0.0 00 00700 1 7100.0 1
| 4 10.20000... 3 0.25 0.25 0.0 0.0 1500 1 61000 1

5 _|0.20000... |3 0.25 0.25 0.0 0.0 5280.0 1 BEDOLD 1
’I 0.20000... 3 0.34999... 0.349%3.. 0.0 0.0 7940.0 1 7900.0 1
| 7 |o.20000., |3 0.40000.., 0.40000,. 0.0 00 05300 1 7900.0 1
| & |00 0 oo 0.0 o0 00 54900 1 85000 1
| 9 |0.0 0 oo 0.0 0.0 0.0 3830.0 1 8400.0 1
| 10| 0.20000... 3 05 0.25 0.0 0.0 E610.0 1 68000 1
| 11)0.20000.., 3 0.34999.., 0.349%93.. 0.0 0.0 7310.0 1 84000 1
| 12 10.20000... |3 0.40000... | 0.40000... 0.0 00 141600 1 83000 1
| 13 | 0.20000... 3 0.A0000... |0.40000... 0.0 00 123700 1 BE00.0 1
| 14]0.20000.. 3 0.34999... 0.34999.. 0.0 0.0 BE20.0 1 BEDO.O 1
| 15 | 0.20000... |3 0.34999... 0.349%9.. 0.0 0.0 SEA0.0 1 90000 1
| 16 10.20000... |3 0.34595.., |0,34959... 0.0 00 144100 1 8000 1
| 17 10.0 0 0o 0.0 0.0 0.0 2970.0 1 8%00.0 1
| 18]0.0 0 o 0.0 0.0 0o SE60.0 1 2800.0 1
1900 0 oo 0.0 0.0 0.0 4170.0 1 97000 1
M lan " ~ An an na n i neman a -
€ ¥

®

Sum{114010] Min{3830] Ma{30070] Mean{10364.54545) Rangel26240) Medianl7540] g eiceioc o0 Salaiction

Figure ?7?2? shows the parameter editor with an applied dimension filter. The table presents all parameter that are
bound to a specific dimension. Selecting cells in the table will print basic statistics about those on the bottom of
the window. Any area can be selected, a column selection will print statistics about the whole column.

2.1. Parameter Editor Console

The Parameter Editor contains a command line console at the upper part of the window. It allows the

3. Analysis Output

The analysis output window provides ad-hoc result information as defined in the analysis section of asimulation.
It is executed by pressing the Analysis Button in the tool bar in asimulation tab. A analysis window might look
like Figure 7??

58

The Modeling Console

Figure5.5. Analysis Output

Jl Simudation Output [fod/projects/ems3.prj.pras2008/output/Elcarsen/0Q71 - X
- 8ulputfulder
East Fork Carson | Error Flow Duration Scatter Plot
Analysis tabs East Fork Carson

Date

The tile bar shows the output folder that is used to perform the output data analysis. Depending on the setting in
<out put st r at egy>, such output can be versioned or unversioned. Either way, thelast output folder of asimulation
run is presented.

Theanal ysi s section of asimulation filesallowsthe definition of plotssuch ast i neseri es, error plots,scatter
plots, esp-trace analysis plots, and others. Each of these plots will appear as a tab in the analysis window, the
plot title shows as a tab name.

A part of the analysis section used to create the plots in Figure ??? is shown below.

anal ysis(title:"Simulation Qutput") {
tineseries(title:"East Fork Carson", view COVBINED) ({
x(file:"%ast/outl.csv", colum:"date")
y(file:"%ast/outl.csv", colum:"basin_cfs")
calc(eq:"sim- obs") {
sim(file:"%ast/outl.csv", colum:"basin_cfs")
obs(file:"%ast/outl.csv", colum:"runoff[0]")

y(file:"%ast/outl.csv", colum:"runoff[0]")

}

timeseries(title:"Error", view MILTI) {

It is clear how theti meseri es section content maps to the visual view. Note the the variable % ast references
the last output folder of asimulation run. The plot also has a calculated column.

Note that an analysis section of asimulation is only being used when invoked. A regular simulation run does not
perform the data analysis.

59

Chapter 6. Advanced Techniques

In this chapter, several advances framework aspects

1. Simulation Traceability and Audit Support

Managing and tracking the simulation process is as just as important as the simulation principles and methods
themselves. Authorities who use simulations for predictions, and forecasts that effect the public are required to
manage the trail of resources that where used to produce a particular prediction. At any given time and on (legal)
requests a simulation output must be reproduced by recalling and recreating the simulation conditions at that time.

Simulation traceability is a core feature of OMS3. There are several aspects that should be combined to provide
for a secure solution for output audit trails.

» A Version Control System (VCS) for software version tracking must be used to host and version al model
resources such as source components, parameter and data files, and the smulation filein arepositories. All files
must carry the Ver si onl nf o and Sour cel nf o annotation (for source code), and the corresponding meta data
entriesfor csv files. If supported, the VCS should be setup to support keyword substitution on source files.

* Any OMS simulation can generate a Secure Hash Algorithm digest (SHA digest) of al involved simulation
resources. As a default algorithm SHA-256 is being used, however is could be replaced (by setting the system
property 'ons3. di gest . al gor i t hm) with astronger hash function (SHA-384 or SHA-512). A simulation digest
istherefor a secure hash that is unique to a simulation configuration. It is being computed before the simulation
starts.

Theisbeing applied in different ways:

 If computed (si mu parameter is set di gest : t r ue) the simulation sets the system property ons3. di gest to
the digest value. Any component in the model can now access this system property, for example an output
component might carry this value into a generated output file.

An fragment of an output component writing the Digest astext to afilefi | e might look like this:

@ntitialize
voidinit() {

String v = System get Property("ons3.digest");
if (v!=null) {

file.println(" Digest," + v);
}

e The simulation method di gest () can be invoked to create a digest record creating thet upl e (<di gest >,
<si mul ation resour ces>) . Asdefault, thiscall printsthe digest and the Sour cel nf o/Ver si onl nf o records
of al components/datafiles of that simulation to the console. Such information might be further processed
for inclusion in a secure store (e.g. data base):

println simdigest()

6b2d424e12626c65b6f 9e3136de735703d405d4f 207395797d9f 9b4487a23e7f

twdimte & &
tw Daylen & &
tw. HamonET & &
tw. Qutput & &
tw. Runoff & &
tw. Snhow & &
tw. Soi | Moi sture & &

>

60

Advanced Techniques

The example above shows the simulation digest record for the Thor nt hwai t e model. The first line contains
the digest, followed by the simulation resources.

« There aother infrastructure pieces required such as a data base for digest storage and retrieval.

The principal architecture for simulation traceability in OMS3 is shown in the Figure ??2. It illustrates the inte-
gration with a version control system for resource tracking and a data base for digest tuple tracking.

Figure 6.1. Simulation Traceability Schematic
Wersion Control System

l
Run . sD 11
L‘\u Cnmp ‘ ‘ Output ‘ 1)

Iy i : !
Simulation S0 {SHA, Resourcds)

L ! i .
AN > 1| SD-DB !
™,]
™, 0, "y simulation
] - reconstruction
Document -
Data ‘ Doc -

- r

=]

OMS3 provides a cor e simulation digest infrastructure that can be complemented with 'inverse' tools allowing for
exampl e (i) the automatic recreation of simulation configurations based on output data sets using simulation digest
records, or (ii) the validation of output records against a set of 'certified' simulations in a master data base. Asa
result any model integrated in OM S3 can benefit from this integrity ensuring feature.

1.1. References

» SHA Hash functions [http://en.wikipedia.org/wiki/SHA hash_functions]

» JCA Reference guide [http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html]
2. Digitally Signing Models

Once amodel is deployed as a jar file, it can be digitally sign with an electronic signature. A digital signature
ensures the integrity of the developed simulation. Once signed a simulation jar cannot be altered: Components,
default parameter settings, and the model cannot be switched or patched. The signature protects the investment to
develop a complex simulation setup. However you can overwrite public parameter values, an can control output
generation.

2.1. Creating a self signed certificate

Y ou haveto haveinstall the Java SDK from http://java.sun.com/j2se/downl oads.html; the tools have to bein your
path

61

Advanced Techniques

Step 1 - Create akey:

keyt ool -alias keynane -genkey
Thiswill create anew keystore (usually $HOVE/ . keyst or e) if not present or add to it.
Step 2 - Sign thejar file using the key - Sign sim.jar:

jarsigner simjar keyname

2.2. Importing an issued certificate

An issued certificate from a certification authority can be imported:

$ keytool -inmport -alias od -file OD. cer

2.3. Validating the Integrity of a Simulation

Once a Simulation jar issigned it gets verified on execution:

$ java -jar EFC.jar

If verification fails, execution will abort. You can also verify the Simulation Jar with the j ar si gner tool. You
can also verify the Simulation Jar with the jarsigner tool

$ jarsigner -verify EFC jar
jar verified.

VMr ni ng:
This jar contains entries whose signer certificate will expire within six nonths.

Re-run with the -verbose and -certs options for nore details.
To get more details on certain component signatures:

$ jarsigner -verbose -certs -verify EFC jar

snk 1536 Thu May 24 10:17:22 MDT 2007 gov/usgs/ prmns/ PrecipKrig. cl ass

X. 509, CN=d af David, OJk=CSU, O=CSU, L=FC, ST=CO, C=US (od)
[certificate will expire on 1/14/09 10: 44 AM

snk 1593 Thu May 24 10:17:22 NMDT 2007 gov/usgs/ prns/ Qbs. cl ass

X. 509, CN=AQ af David, OU=CSU, O=CSU, L=FC, ST=CO, C=US (od)
[certificate will expire on 1/14/09 10: 44 AM

signature was verified

entry is listed in nanifest

at |least one certificate was found in keystore

at | east one certificate was found in identity scope

s
m
k
i

These examples show different levels of protecting amodel jar using digital signatures

The Jar deployment of OM S model is easy to perform and has the foll owing features and benefits. Simulations can
be packaged into an executable simulation jar. The simulation jar contains all code, data, and resources as defined
within the IDE to run the simulation. To run a simulation only a Java Runtime Environment and the Simulation
Jar are needed, no OMSiinstallation is required. Simulation jars are sealed and can be digitally signed. Therefore
adeployed simulation jar is secure and cannot be compromised. Simulation jars carry al information about the
origin of resources that make up this simulation such as the version of components, data sets and the model. All
sources can be traced back, if version info is present.

62

Advanced Techniques

3. Documenting Simulations

Component Documentation can be generated from sources or binary classes.
package prns2008;

import java.util.Cal endar;

import java.util.logging.*;

i mport ons3. annotations. *;

import static ons3. annotations. Rol e. *;

@escri ption
("Potential ET - Jensen Haise." +
"Determ nes whether current tinme period is one of active" +
"transpiration and conputes the potential evapotranspiration" +
"for each HRU using the Jensen-Hai se formul ation.")
@\ut hor
(nanme= "George H. Leavesley", contact= "ghl eavesl ey@ol ost ate. edu")
@Xeywor ds
(" Evapotranspi ration")
@i bl i ogr aphy
("Leavesley, G H., Lichty, R W, Troutman, B. M, and Saindon, L. G, 1983, "+
"Precipitation-runoff nodeling " +
"system-user's manual : U S. Geol ogi cal Survey Water Resources |nvestigations " +
"report 83-4238, 207 p.")
@/ersi onl nfo
("$ld: PotetJh.java 390 2009-09-01 19:56: 07Z ghl eavesl ey $")
@sour cel nfo
("$URL: http://svn.javaforge.conm svn/ons/ branches/ ons3. prj . prnms2008/ src/ prns2008/ Pot et Jh. j ava
@.i cense
("http://ww.gnu.org/licenses/gpl-2.0.htm")
@ocunent at i on
("file:/C /odl projects/ngnf.nmodel s/src/prnms2008/ Pot et Jh. xm ")
@t at us
(St at us. TESTED)

public class PotetJh {

/Il private fields
doubl e[] tmax_sum

/1 "Indicator for whether within period to check for beginning of transpiration, 0=no, l=yes.
int[] transp_check;
int[] transp_end_12;

/1 1 nput parans
@0! e(PARAMETER)
@n public int nhru;
@0! e(PARAMETER)
@n public int nsol;

@rol e(PARAVETER)

@escription("HRU area , Area of each HRU")
@it ("acres")

@n public double[] hru_area;

@Rol e(PARAMVETER)

@escription("Mnthly air tenp coefficient - Jensen-Haise Munthly air " +
"tenmperature coefficient used in Jensen -Haise potential evapotranspiration " +
"conput ati ons, see PRMS manual for cal cul ati on net hod")

@Jni t ("per degrees")

@n public double[] jh_coef;

@rol e(PARAMETER)

@escription("HRU air tenp coefficient - Jensen-Haise Air tenperature " +
"coefficient used in Jensen-Haise potential evapotranspiration " +
"comput ations for each HRU. See PRVMS nmanual for cal cul ati on nmet hod")

@i t ("per degrees")

@n public double[] jh_coef_hru;

63

Advanced Techniques

@0| e(PARAMETER)

@escription("Units for neasured tenperature Units for neasured " +
"tenperature (O=Fahrenheit; 1=Cel sius)")

@n public int tenp_units;

@0l e(PARAMVETER)

@escription("Mnth to begin testing for transpiration Month to begin " +
"summ ng tmaxf for each HRU; when sumis >= to transp_tmax, transpiration

@Jni t ("nmont h")

@n public int[] transp_beg;

@Rol e(PARAMVETER)

@escription("Mnth to stop transpirati on period Month to stop transpiration "
"conputations; transpiration is conputed thru end of previ ous nonth")

@Jni t (" nmont h")

@n public int[] transp_end;

@Rol e(PARAMVETER)

@escription("Tmax index to determi ne start of transpiration Tenperature " +
"index to determ ne the specific date of the start of the transpiration
"period. Subroutine suns tmax for each HRU starting with the first " +
"day of nonth transp_beg. Wen the sum exceeds this index, transpiration

@Jni t (" degrees")

@n public double[] transp_tnmax;

/1 | nput vars

@escription("The conputed sol ar radiation for each HRU [solrad]")
@Jni t ("cal ori es/cnR")

@n public double[] swad;

@escription("Average HRU tenperature. [tenp]")
@nit("C")
@n public double[] tavgc;

@escription("Average HRU tenperature. [tenp]")
@nit("F")
@n public double[] tavgf;

@escription("Maxi mum HRU tenperature. [tenp]")
@nit("C")
@n public double[] tnaxc;

@escription("Maxi mum HRU tenperature. [tenp]")
@nit("F")
@n public double[] tnaxf;

@n public double deltim
@n public int active_hrus;
@n public int[] hru_route_order;
@n public double basin_area_inv;
@n public int newday;
@n public int route_on;

c

@n public Cal endar date;

/1 Cutput vars

@escription("Switch indicating whether transpiration is occurring " +
"anywhere in the basin (0=no; 1=yes)")

@ut public int basin_transp_on;

begi ns")

+

begi ns")

@escription("Switch indicating whether transpiration is occurring (0=no; 1l=yes)")

@ut public int[] transp_on;

@escription("Potential evapotranspiration on an HRU")
@i t ("inches")
@ut public double[] potet;

@escription("Basin area-wei ghted average of potential et")
@i t ("inches")

Advanced Techniques

@ut public doubl e basin_potet;
@ut public doubl e basin_potet_jh;

private void init() {
Il init ...
}

@Execut e
public void execute() {
/1 execute code ...

}
}

The following section shows the documentation asit is created from the PotetJH.java class as a docbook5 section.

4. Native Language Interoperability

The use of modeling code written in languages other that Java is supported in OMS. This enables legacy code
written in 'scientific' simulation languages such as FORTRAN, C, C++ to be used within an OMS model. All
native interoperability as described below is accomplished using the Java Native Architecture (JNA) , an open
source library that emphasizes an easy integration of Dynamic Linkable Librariesinto Java.

JNA hasbeen originally developedto alow for easy Java- C/C++ communication. It does not burden the devel oper
with traditionally JNI (Java Native Interface) management and other intermediate files/APIs. In contrast to JNI
which supports static interoperability, INA uses dynamic dispatching at runtimeto connect to native DLL sdirectly
from Java. INA's design aimsto provide native accessin anatural way with aminimum of effort. No boilerplate or
generated code is required. While some attention is paid to performance, correctness and ease of use take priority.

4.1. FORTRAN 90/95

This section will introduce the use of INA (Java Native Architecture) for direct JavalFORTRAN interoperability.

Examplesfor C/C++ arediscussed in detail at the INA website, however the use of FORTRAN withinthe scientific
community isas much asimportant. It can be achieved with the 'out-of-the-box' JNA library. The objective of this
section isto show how to craft, compile, and link FORTRAN code to be accessible directly from Javausing JNA.

4.1.1. General Setup

The following FORTRAN example function takes two arguments and returns their product.

I Multiplication function that binds to the C |anguage as 'foomult'
FUNCTION mul t (a, b) BIND(C, nane='foonmult"')

! both argunents are passed by val ue

I NTEGER, VALUE :: a, b

I NTEGER :: mult

mult =a* b
END FUNCTI ON nul t

* It uses the BI ND keyword to provide for a C name binding. In Java/JNA this function can be called under that
name.

» The function parameter are declared as value parameter. If omitted, a and b would be passed in by reference.

The FORTRAN function above can bereferenced and used in Javausing INA. OM S provideson top of INA asmall
convenience library that makes handling of DLLs even easier with respect to runtime binding and deployment.
Theuse of thislibrary isnot required, however it makesthe integration straightforward and simplifies deployment.

i mport ons3.annotation. *;

@LL("F90Dyn")

65

Advanced Techniques

interface F95Test extends com sun.jna.Library {
/1 java interface nethod to FORTRAN
int foorult(int a, int b);

}

/1 Bind 'F90Dyn.dl|l"' to the interface ' F95Test'
F95Test |ib = Libraries. bindLi brary(F95Test. cl ass);

» The FORTRAN function residesin filel i bF90. dl | , that isaccessiblein thej na. l'i brary. pat h.

e The static call Li brari es. bi ndi brary belongs to the INA API and binds all interface methods as specified
in F95Test to their counterpartsini i bF0. dli | .

» The Javainterface function maps to the name as specified in BI ND. This solves naming problems that results
from different handling of symbol namesin object files/dlls with respect to underscoring. Using BI NDis highly
recommended, sinceit ensures a consistent external name for the function/subroutine regardless of the compiler
being used and its location within a module.

« Since function arguments are passed in by value, regular nativei nt types can be used within the Javainterface
method. However, assigning new values within the FORTRAN function to a and b won't be propagated to the
caller. Use the'Call by reference’ method if thisis desired.

The method can now be called like this:

int result = 1ib.foonult(20, 20);
assert result == 400;

For more details on compiling/linking see further below.

4.1.2. Scalar Arguments by Value

I Multiplication function that binds to the C |anguage as 'foonult'
FUNCTION nul t (a, b) BIND(C, nanme='foonult")

I both argunents are passed by val ue

I NTEGER, VALUE :: a, b

I NTEGER :: mult

mult =a* b
END FUNCTI ON mul t

i mport ons3. annot ati on. *;

@LL("F90Dyn")

interface F95Test extends com sun.jna.Library {
/1 java interface nethod to FORTRAN
int foomult(int a, int b);

}

[/ Bind 'F90Dyn.dll"' to the interface 'F95Test"’
F95Test |ib = Libraries. bindLi brary(F95Test. cl ass);
4.1.3. Scalar Arguments by Reference.

To call asubroutine with arguments by reference, you shall not use the VALUE keyword on FORTRAN argument
declaration. Now you can assign new values to the arguments, that will be later visible to Java.

SUBROUTI NE ffunc(a, b) BIND(C "reffunc")

66

Advanced Techniques

INTEGER :: a, b
a=3
b =5

END SUBRCUTI NE

The Javainterface method needsto be modified to support call by referenceviathe INA API ByRef er ence classes.
v0| d reffunc(ByReference a, ByReference b);
Ther ef f unc subroutine will be called as follows:

I nt ByRef erence a = new | nt ByRef erence(0);
I nt ByRef erence b = new I nt ByRef erence(0);
F95Test.lib.reffunc(a, b);

assert Equal s(3, a.getValue());

assert Equal s(5, b.getValue());

Now you create the int reference objects, pass them into reffunc and retrieve the values with .get val ue() .

4.1.4. Array Arguments

Single and Multidimensional arrays can be handled in INA/Java and FORTRAN. Like with Strings, the length of
the array has to be passed in with additional arguments.

SUBRQUTI NE inc(arr, |en) BIND(C, nane='fooinc')
I NTEGER, DI MENSI ON(l en) :: arr

| NTEGER, VALUE :: len
I NTEGER :: i
DOi =1, len
arr(i) = arr(i) + 30
END DO

END SUBROUTI NE

SUBROUTI NE arr2d(arr, m n) BIND(C, nanme='arr2d')
I NTEGER, DI MENSION(m n) :: arr
I NTEGER, VALUE :: m
I NTEGER, VALUE :: n

INTEGER :: i,]
DOi =1, m
DOj =1, n
arr(i,j) =arr(i,j) +1
END DO
END DO

END SUBROUTI NE

The exampl es above show the declaration and the use of aone and two dimensional array as subroutine arguments.
The array is dimensioned by the extra parameter, they are passed in as value arguments.

The INA/Java declaration part is shown below. Note that the multidimensional array, has to be one-dimensional
in Java. FORTRAN will lay it out correctly by using the dimension lengths that are passed in.

interface F95Test extends Library {

void fooinc(int[] arr, int len);
void arr2d(int[] arr, int m int n);

—

The use if the one dimensiona array is pretty simple. The other example required a bit management on the Java
side, that is not shown here.

67

Advanced Techniques

/11D

int[] a={1, 2, 3, 4, 5};

l'ib.fooinc(a, a.length);

assert ArrayEqual s(new int[]{31, 32, 33, 34, 35}, a);

/12D

int[] a={1, 2, 3, 4, 5 6};

lib.arr2d(a, 3, 2);

assert ArrayEqual s(new int[]{2, 3, 4, 5 6, 7}, a);

If areal Java multidimensional array needs to used in FORTRAN, it needs to be flattened into 1D, or you use an
access method in Javato usea 1D Array in a2D way.

4.1.5. String Arguments

String arguments are always special, since Strings are represented differently in almost all languages. In FOR-
TRAN, you declare astring argument as follows, note that the size of the string hasto be passed in as an additional
argument.

The following function takes a string argument and verifies the content and length. The argument line is defined
as a CHARACTER array, its length is passed as a second argument by value, and it is being used to dimension the
length of the string.
FUNCTI ON strpass(line, b) BINDC, nanme='foostr')
CHARACTER(| en=b) :: line
I NTEGER, VALUE :: b
LOGE CAL :: strpass

strpass = (line == "str_test') .AND. (b == 8)
END FUNCTI ON

The JavalINA prototype looks like this:
bbbl ean foostr(String s, int |len);
The application will need to passin the string and obtain the actual string length.

String test = "str_test";
bool ean result = lib.foostr(test, test.length());
assertTrue(result);

4.1.6. Modules

Modules can be used to place al subroutines/functions that should be used via INA, its good practice. A module
allowsfor global data, an modulelevel | MPLI CI T NONE. Again, it isrecommended to use the BI ND keyword since
the compiler might alter the subroutine name in the DLL otherwise, sinceit is a different scope.

MODULE t est
| MPLI CI' T NONE
CONTAI NS
SUBRQUTI NE ffunc(a, b) BIND(C, "reffunc")
INTEGER :: a, b
a =3
b =5
END SUBROUTI NE

END MODULE t est

68

Advanced Techniques

The example above the subroutine f f unc can still be called asr ef f unc from JNA/Java.

4.1.7. TYPE Arguments

Type argumentsfor functions can be handled too. Thisallowsthe passing of complex objects directly from Javato
FORTRAN. Lets suppose you have the following FORTRAN code, that definesaTYPE for a City and a subroutine
t ypepass that takes such an argument.

MODULE t est
I MPLI CI' T NONE

TYPE :: City
I NTEGER :: Popul ation
REAL(8) :: Latitude, Longitude
INTEGER :: Elevation

END TYPE

CONTAI NS

SUBROUTI NE t ypepass(c) BIND(C, nane='footype')
TYPE(CITY) :: c

c%opul ati on = c%opul ati on + 1000
c%Watitude = c%atitude + 5
c%ongi tude = c%ongitude + 5
cY%El evation = c%l evation + 9

END SUBROUTI NE

END MODULE t est

Both the TYPE and the subr out i ne are placed in anodul e.

Now lets look at the INA/Java counterpart that defines the interface for t ypepass:

i mport com sun. j na. Li brary;
i nport com sun. j na. Structure;

public static class City extends Structure {
public int Popul ati on;
public double Latitude, Longitude;
public int Elevation;

}

@LL(F95Test)

interface F95Test extends Library {
voi d footype(City c);

}

Thereisan Javaclass caled City that must have the identical internal layout to its FORTRAN TY PE. The names,
however, do not matter. It also has to be subclass of Structure which is defined in the INA API.

Note that all fields of Gty have to be public to allow JNA to compute its size. The FO5Test method again used
the BI ND hame and the City argument.

An application will instantiate theCity object and passit in as usua.

Cty city = new G ty(3000, 0.222, 0.333, 1001);
F95Test . i b. f oot ype(city);

assert Equal s(4000, city. Popul ation);

assert Equal s(5.222, city. Latitude, 0.0001);
assert Equal s(5.333, city.Longitude, 0.0001);
assert Equal s(1010, city. El evation);

69

Advanced Techniques

4.1.8. Pitfalls and Obstacles

» Always be aware that FORTRAN subroutine/function arguments are passed by reference, unless the VAL-
UE modifier is used. You might end up accessing memory that might cause a segfault. Therefor use always
Nati ve. set Prot ect ed(true) to provide for more memory protection in the INA site, if supported for your
architecture.

 If INA cannot find your function in aDLL and both names match in source, do not panic. Y ou should explore
the DLL tofind out thereal nameinyour DLL, sincethisiswhat JINA islooking at not the source. Do something
like nm i bF90Test.dll | grep reffunc if reffunc isthe function you'd like to cal. You'll see maybe
a different (more underscores in the name, or a module name prefix) name depending on the compiler and
compiler flags. Thisis the name you should use in your Java interface. To make this more transparent use the
Bl ND keyword in your source to ensure the proper nameinthe DLL.

* If you pass Javaobjectsto FORTRAN as TYPE, al Javafields have to be public. INA will complain at runtime
not being able to determine the size of the Java object.

» Be aware of the array ordering in FORTRAN that sees a two dimensional array aways in COLUMN/ROW
order. Also, you cannot pass areal multidimensional Java array to FORTRAN, since those do not have a con-
tinuous memory layout. On the Java side you always have to manage a one dimensional array that you reshape
for FORTRAN by passing its dimensions into the function/subroutine.

e If a DLL cannot be found at runtime, you need to set the search path. You can set the system property
jna.library. path to point to paths on your file system. You also use the Nat i veLi brary. addSear chPat h
method to add amap a directory to a specific DLL name.

4.1.9. Data Type Mapping

The following table shows equivalent data types between FORTRAN and Java, when passed by value

Table6.1. INA FORTRAN-Java Data Type Mapping

FORTRAN JAVA
INTEGER(Kind=8) int
INTEGER(Kind=4) short
REAL (Kind=4) float
REAL (Kind=8) double
LOGICAL boolean
CHARACTER byte
CHARACTER(len=) String

4.1.10. DLL Generation

he following sections will provide some help for managing the build process using different compilers. GNU's
compiler collection and the G95 spin-off, as well as the Intel Compiler suite seem to be the most important tools
for the general developer.

4.1.10.1. G95

G95 alows compiling and linking into a DLL. Note that G95 is not a part of the GNU compiler collection. To
compile and link a FORTRAN sourceinto a DLL use the following flags for GCC tools:

Compile a FORTRAN source into an object file:

$ g95 -fno-underscoring -c -g -0 build/ftest.o ftest.f90

70

Advanced Techniques

Link the DLL:

$ g95 -W, --add-stdcall-alias -shared -o dist/libF90Dyn.dll build/ftest.o

Note that you have to use G95 for linking too. This ensures for linking the right FORTRAN runtime libraries

into your DLL

4.1.10.2. GFortran

[TBD]

4.1.10.3. Intel FORTRAN
[TBD]

4.2. C/C++

[TBD]

4.2.1. Dynamic Link Library Generation

[TBD]

4.3. References

« INA
« GCC

* Intel Compiler

5. Embedding OMS
[tod]

Use cases:

» hand over asimulation to a user who just wants to apply the model

« amodel will be used in a deployment environment such as aweb server, etc.

» asimulation should be certified for production by an authorized person or institution, the simulation can be

explored since it is self-documenting with respect to

its components, model, and parameter files.

A simulation is deployed as a Jar file. Thisis called a Simulation Jar. This simulation jar has the following char-

acteristics

It contains all the resources that are required by th
components, default parameter sets, libraries.

at simulation such as the simulation file, the model, the

It also contains all the OM S runtime classes to execute the simulation.

* It contains description about the origin and version of those resources.

71

Advanced Techniques

Thesimulation jar isself contained, no other external classes are required to run the simulation, everything needed
is packaged together. The simulation jar is aso 'sealed’. Only classes from within the simulation file are being
used for execution, no external code cannot be injected into the simulation. Thisis an important security feature.

72

Appendix A. Glossary

Annotation

CBSE

Component

Compound

Model

Model Base

JAR (Java Archive)

VM

Interface

Meta Data

Unit

CLASSPATH

Java Virtual Machine (VM)

POJO

IEF

SHA

A Java annotation is a specia form of syntactic meta data that can be added
to Java source code. Thisfeatureis availablein Java 5+.

Component Based Software Engineering

A component is asoftware unit (class, module) which provides an implemen-
tation for exact modeling concept. It is context-independent both in the con-
ceptual and technical domain.

A Compound isacomplex component containing other simple and compound
components.

A compound assembly of components to that has a application use case. In
general isbeing used to express relevant system aspectsin a mathematical/al-
gorithmic form.

A family of related model components.

Javaarchive. A jar file (*.jar) contains a directory structure of Java files and
other resources. It can be compressed.

Java Virtual Machine. The execution environment for Java Byte code.

An interface declares a certain behavior of a class. It is atype that specifies
but never implement methods.

Context information about data such as physical unit of a variable, its valid
range constraints, etc.

Predefined unit to express or measure a quality.

A classpath is an environment variable that list a set of directories containing
Java jar or .classfilesthat are being used in an application.

The VM executes the bytecode (* .class) produces by a java compiler
Plain Old Java Object

Initialize/Execute/Finalize, a shortcut describing the structural concept of
components.

Secure Hash Algorithm

73

Appendix B.

Annotation Reference

1. Annotation Types

Annotations are used to specify resources within a class that relate to its use as a modeling component for OM S3.
Such annotations may have different relevance and importance to different aspects of the use of component use.
The same annotations can also play different roles depending on their context. There are three main annotation

categories:

Mandatory Execution Annotations

Supporting Execution Annotations

Documentation Annotations

Such meta data is essential information for component execution (in ad-
dition to the documentation purpose). Thee describe method invocation
points and data flow between components. Thisis required meta data.

Such meta data supports the execution by providing additional information
about the kind of data flow, physical units, and range constraints that might
be used during execution. Thisis optional meta data.

Those annotations are being used for documentations, presentation layers,
databases, and other content management system. This is required meta
data for component publication, but optional for execution.

What are Annotations? Annotations are a Java feature since version 1.5. They are an add-on to the Java language
to alow for custom and domain specific markups of language elements. They do not affect directly the class
semantics, but they do affect the way classes are treated by tools, such as a modeling framework. Annotations
can be seen as extension of the Java Classes with meta information that can be obtained up from sources files,
compiled classes, or loaded classes at runtime. They respect also languages scopes and are supported by JavalDEs
with code completion and syntax highlighting.

The table below shows all modeling annotations categorized by language elements they are describing.

Table B.1. Component Annotations Overview

Class Field Method
@escription @escription @xecute Y
@ut hor @nV @nitialize
@i bl i ogr aphy @ut Y @inal i ze
@t at us @i t
@/er si onlnfo @range
@Xeywor ds @Rol e
@.abel @ound
@our cel nfo @ abel
@.i cense

@ocunent ati on

@LL 2

Note

= Required annotation for a component.

2 Interface annotation for Native Language integration

Annotation names always start with the '@ character, indicating the difference to aregular class. The @(at) sign
was chosen because 'AT' can be seen as abbreviation for ‘Annotation Type'. Annotations can only appear once for

74

Annotation Reference

agiven language element. For exampleitisillegal to usethe @ut hor annotation twice for acomponent. Instead,
the name field of an @ut hor should list the two names, separated by some delimiter.

The following sectionsintroduce all modeling annotations in detail, examples are given.

1.1. @Description

The @escri pti on annotation provides for component summary information, such as a brief paragraph about
its purpose, scientific background, etc. It is being used for automatic capturing the purpose of a component by
archiving tools, online presentation or documentation tools, or to supplement database integration. The component
selection during the process of model building and repository management can be supported by this annotation
which should not exceed afew sentences. If more context information need to be provided, the @ocurrent at i on
annotation should be used in addition.

Synopsis @escription(<String>)
ar g - the description paragraph

The description can be localized for different languages. Add the 1SO language code (http:/
ftp.ics.uci.edu/publietf/http/rel ated/iso639.txt) to provide description in a different language. De-
scription for multiple languages is supported.

Type Documentation Annotation
Scope Class, Field
Example @escription

("CGrcle Area Cal culation.")
public class CircleArea {

@éscri ption("Radi us")
@n public double r;

@escription
(en="Circle Area Cal cul ation.",
de="Ber echnung der Kreisflaeche")
public class CrcleArea {

@escri ption("Radi us")
@n public double r;

1.2. @Documentation

The @ocunent at i on annotation serves as a connector or link to more detailed background documentation about
the component. It allows to reference other documents via a URL. Usually those documents reside on a public
server or local hard drive as PDF, HTML, Docbook, or an other text document. The referenceis provided asusing
different URL protocolssuch ashttp://..., https:/l....fil eill...

Synopsis @ocunent at i on(<URL>)
ar g - URL reference to more detailed documentation.
Type Documentation Annotation

Scope Class

75

Annotation Reference

Example @ocunent ati on
("http://myserver.com docs/ Cricl eArea. pdf")

public class CircleArea {

}

1.3. @Author

The optional @ut hor annotation providesinformation about the authorship of the component. The annotation has
sub the fields nane, or g, and cont act provide more details about the name, the affiliated organization, and some
contact information such as an email address, or alink to a home page.

Synopsis @\ut hor (nanme=<String>, org=<String>, contact=<String>)
nane - the name of the authors(s)
or g - organization name (optional)
cont act - contract information such as email or address (optional)
Type Documentation Annotation
Scope Class

Example @\ut hor
(nanme="Joe Scientist",
org="Research Org",
contact ="j oe. sci enti st @esear ch-org. edu")

public class HanobnET

}

1.4. @Status

This annotation enriches a component with some development and deployment status information. A statusis a
component quality indicator. A developer can specify the level of completeness or maturity of a component with
this tag.

Synopsis @t at us(<Enun®)
arg- Status. DRAFT (Initial devel opment status, private prototype)
St at us. SHARED, (conponent worth sharing, still in devel opnent)

St at us. TESTED, (conponent is tested in a nodel, test datasets and unit tests
avai | abl e)

St atus. VERI FI ED, (conponent is inplenented properly, conplete)
St at us. VALI DATED, (Conponent fulfills requirenents, validation tests avail able
St at us. CERTI FI ED (Conponent accepted and certified by authorty)

Type Documentation Annotation

Scope Class

Example @escription

("Grcle Area Calculation.")

@t at us
(St at us. TESTED)
public class CircleArea {

76

Annotation Reference

}

This annotation might be consumed by tools that publish the component to a component repository, it should
control the publication process. Another use case would be the pre-run check of a deployed model that al of its
components are certified by a authority.

1.5. @VersionInfo

The @ver si onl nf o annotation takes aargument that represents the version of this component. A developer might
use version control system supported keyword substitution for this. The example below shows the use of the Sub-
version keywords $1 d to provide revision number, modification time, and committer name as version information
record. Mgjor version control systems (CV'S, Subversion,...) either have a built-in support for thisfeature or it can
be used in conjunction with external tools (Mercurial, GIT). Therefore this annotation should not only contain an
arbitrary version number, but afull version record instead is good common practice.

Synopsis @/er si onl nf o(<St ring>)

arg - Version information record

Type Documentation Annotation
Scope Class
Example @/ersi onl nfo

("$ld: ET.java 20 2008-07-25 22:31:07Z od $")
public class ET {

:

Component repositories can use and present thisinformation, archiving tools or documentation generators might
pick this up too.

1.6. @Sourcelnfo

The @sour cel nf o annotation captures information about the source. This should be some hint about source avail-
ability, maybe the source location or some contact information. The example below showsthe use of Subversion's
keyword substitution for the head URL of asourcefile. It can aso point to a specific tagged version with arepos-
itory.

Synopsis @our cel nf o(<String>)

arg - source URL reference

Type Documentation Annotation
Scope Class
Exanuje @sour cel nfo

("$HeadURL: http://www. test.org/repo/ ET.java $")
public class ET {

}

@our cel nf o is optional. Component repositories or documentation generators can use and present thisinforma-
tion

1.7. @Keywords

A component an be tagged with the @eywor ds annotation to characterize/categorize it. It does have the same
purpose like a keyword list in a scientific paper. Thisis optional meta data and can be used to index, search, and
retrieve archived and stored components. It is optional meta data.

77

Annotation Reference

Synopsis @eywor ds(<String>)

arg - list of kerwords separated by conm
Type Documentation Annotation
Scope Class
Example @escription
("Circle Area Calcul ation.")
@Xeywor ds

("Geonetry, 2D")
public class CircleArea {

}

1.8. @License

The @i cense annotation to specify thelicensefor acomponent. It isoptional metadata. If not present itisassumed
the component is in the public domain and there are no restrictions for its reuse. The license can bein lined text,
however it is recommended to use a URL to point to the license text.

Synopsis @i cense(<String>)

arg - the license text or a URL to its |ocation

Type Documentation Annotation
Scope Class
Example @escription("Circle Area Cal cul ation.")

@i cense("http://ww.gnu.org/licenses/gpl-2.0.htm ")
public class CircleArea {

}

1.9. @Label

Labels relate to ontologies (label is an OWL annotation). Labeling a field or component maybe provides for
alternative names. They can be used to relate components or fields to another naming convention, terminology,
or ontologies.

Synopsis @abel (<String>)

arg - an alternative nane

Type Documentation Annotation
Scope Class, Field
Example public class Calc {

@abel ("l atitude")
@n public double Iat;

}
Labels are optional.

1.10. @In

The @ n annotation on afield specifiesit as input to the component. The field must be public. It indicates a read
(or input access) from within the Execut e method to the field. There are no arguments for this annotation.

78

Annotation Reference

Synopsis
Type
Scope

Example

@n
execution, documentation annotation

Field

@n public double Iatitude;

This annotation is a required annotation for execution to enable data flow between components. @ut fields of
one component might be connected to an @ n field of a second component.

1.11. @Out

The @Out annotation on afield specifiesit as output of the component. Thefield must be public and the Execut e
method will write to it. It is used to connect to an @ n field of another component. There are no arguments for
this annotation.

Synopsis
Type
Scope

Example

@out
execution, documentation annotation

Field

@ut public doubl e dayl en;

This annotation is a required annotation for execution to enable data flow between components. @ut fields of
one component might be connected to an @ n field of a second component.

1.12. @Range

The @ange annotation is supporting an @ n or an @ut field. If present, it defines amin/max range in which the
value of the field is considered valid. It is up to the execution runtime to handle the range information. Violating
aranges might lead to execution abortion if it is a serious problem or just awarning message. Another use of the
range information would be in component testing, see Section ?7?2?.

Synopsis @Range(m n=<doubl e>, max=<doubl e>)
m n - the minimum value, (default=Doubl e. M N)
max - the maximum value, (default=Doubl e. MAX)
Type Execution Annotation
Scope Field
Example e
@range (m n=-90, nmax=90)
@n public double Iatitude;
In the exampl e above the latitude value can only be in the range of -90 to +90 degree. A value out of
this range would probably break any equation that is using latitude. The range use aboveis similar
to a pre-execution check.
1.13. @Role

The @ol e annotation givesan @ n or @ut tagged field a certain meaning within the modeling domain. It allows
someone to understand the meaning of a data field within the modeling context. A @Role annotation categorizes

79

Annotation Reference

afield. Such categories might be "Parameter”, "Variable", "Output", "Input”, "Simulated" and others. The Role
annotation takes the category as a String parameter. There are predefined categories defined in @Role, however
categories can be defined by the component developer.

If the @Role annotation is not provided, the default Rol e. VARI ABLE it is assumed.

Synopsis @Rol e(<String>)
arg - the role that this field is playing in context of the conponent.
predefi ned:

Rol e. PARAMETER, Rol e. VARI ABLE, Rol e. SI MULATED, Rol e. OBSERVED, Rol e. STATE,

Rol e. QUTPUT
Type Documentation Annotation, Testing
Scope Field
Example @0l e(Rol e. PARAVETER)

@n public double |atitude;

This example tags 'latitude’ as Parameter.

@Rol e(Rol e. QUTPUT_FI LE + Rol e. PARAMETER)
@n public File input;

Roles can be combined too. Now the 'input’ field is a parameter and an output file.

1.14. @Unit

A @it annotation binds a physical unit to a component field that is tagged as @ n or @ut . Units are usualy
attached to scalars and arrays fields. Thisinformation allows the frameworks to perform unit checking/validation
and unit conversion. There are several open source unit conversion librariesavailablethat could be used to perform
unit conversion. An example unit conversion implementation is given in Section 2?2,

Synopsis @it (<String>)

arg - the physical unit of the field

Type Documentation Annotation, execution support
Scope Field
Example public class Calc {

@i t ("degree")
@n public double |atitude;

1.15. @Bound

A @ound definesabinding to another field. It allowsto express dependencies between fields. An array field could
be bound to another field that holds the size for that particular array.

Synopsis @ound(<String>)
arg - the nanme of the field that this field is bould to.

Type Documentation Annotation, execution support.

80

Annotation Reference

Scope Field
Example public class ET {

@ound(" nsi nt") /1 "jh_coeff' is bound to 'nsim
@n public double[] jh_coeff;

@n public int nsim
:
1.16. @Execute

The method that is tagged with the @xecut e annotation provides the implementation logic of the component. In
this method the component Input is being transformed to output. The execution method can have any name, it has
to be non-static, publ i ¢, voi d return type, no arguments.

Thisisrequired meta data for a component.

Synopsis @xecut e

Type Execution Annotation

Scope Method

Example public class Conmponent {
@xecut e

public void executenet hod() {
/| execute code here

}
}

1.17. @Initialize

Within the @ ni ti al i ze method the internal state of a component is initialized. For example opening a file for
reading, or a creating a data base connection would be something that should be done within @ ni ti al i ze

Synopsis @nitialize

Type Execution Annotation
Scope Method
Example public class Conponent {

@nitialize
public void start() {

[/l initialization code
}

}

Name the initialize method any hame you want, but annotate it with @ ni ti al i ze The initialize methods has to
be non-static, publ i ¢, voi d, and has no arguments. This method gets called once after component instantiation
and before the first execution. Thisis optional meta data.

1.18. @Finalize

This method provides the notion of afinal cleanup after model execution (e.g. Closing a DB connection). Usually
the @i nal i ze method and the @ ni ti al i ze method are both present.

Synopsis @inalize

81

Annotation Reference

Type Execution Annotation
Scope Method

Example public class Conponent {
@inalize
public void cleanup() {
/| execute code here
}
}

The @i nal i ze method gets called after the final @xecut e and the termination of the model.
1.19. @DLL

The @LL Annotation simplifies theintegration of native Librarieswritten in C++, C, and FORTRAN. It takes an
argument that corresponds to the name of the DLL (Windows), Shared Object (Linux/Unix), or Library (OSX).

If for example the argument is
Synopsis @LL(<String>)

ar g - the core name of the DLL (without lib prefix in Linux, no file extension).

Type Interface Annotation

Scope Interface<T extends Library>

Example i nport ons3. annot ati on. *;
@LL("F90Dyn")

interface F95Test extends com sun.jna. Library {
/1 java interface nethod to FORTRAN
int foorult(int a, int b);

}

// Bind 'F90Dyn.dl|' to the interface ' F95Test"'
F95Test |ib = Libraries. bi ndLi brary(F95Test. cl ass);

Note: This annotation is supported by the

2. Meta Data Representation

There are various strategies for attaching meta data annotations to components.

2.1. Embedded Annotations

Embedded Annotations are the preferred method for annotating modeling components. They are placed directly
into the source code. Thereforeit is easy to keep code and meta datain sync during development.

i mport ons3. annot ati ons. *;
public class Dayl en {
static final int[] DAYS = {
15, 45, 74, 105, 135, 166, 196, 227, 258, 288, 319, 349
b

@Range(m n=6, max=18)
@ut public doubl e dayl en;

@n public Cal endar currentTine;

@Rol e(“Paraneter”)

82

Annotation Reference

@Range(m n=-90, max=90)
@n public double latitude;

@xecut e
public void execute() {
int month = currentTi ne. get (Cal endar. MONTH) ;
doubl e dayl = DAYS[nonth] - 80.;
if (dayl < 0.0)
dayl = 285. + DAYS[nonth];

doubl e decr = 23.45 * Math. si n(dayl /365.*6.2832) *0. 017453;
doubl e alat = | atitude*0.017453;
doubl e csh = (-0.02908 - Math.sin(decr) * Math.sin(al at))
/[(Mat h. cos(decr) * Math.cos(alat));
daylen = 24.0 * (1.570796 - Math. atan(csh /
Mat h.sqrt (1. - csh * csh))) / Math.Pl;

2.2. Attached Annotations

Thefollowing Listing show aalternative implementation of the Dayl en component. It was split into two parts, (i) a
pure computational component classDayl en. j ava and (ii) the component metadata class Dayl enConpl nf o. j ava
. Only the latter has meta data dependencies to Ovs3.

DaylenComplnfo.java
publ i c abstract class Dayl enConpl nfo {

@Range(m n=6, max=18)
@ut public doubl e dayl en;

@n public Cal endar currentTing;

@Rol e(“Par aneter”)
@Range(m n=-90, max=90)
@n public double |atitude;

@xecut e
public abstract void execute();

}

Asarule, an attached component meta data class has the same name like the component but ends with Conpl nf o.
This class has to be public and abstract. It duplicates all the relevant fields and methods that should be annotated
for OMS3. The methods should all be abstract. It isimportant to use the same spelling for fields and methods.

Daylen.java
public class Daylen {

static final int[] DAYS = {
15, 45, 74, 105, 135, 166, 196, 227, 258, 288, 319, 349
IE

publ i c doubl e dayl en;
publ i ¢ Cal endar currentTine;
public double Iatitude;

public void execute() {
int month = currentTi ne. get (Cal endar. MONTH) ;
doubl e dayl = DAYS[nonth] - 80.;
if (dayl < 0.0)
dayl = 285. + DAYS[nonth];

83

Annotation Reference

doubl e decr 23.45 * Math. si n(dayl /365. *6. 2832) *0. 017453;
doubl e al at | atitude*0.017453;
doubl e csh = (-0.02908 - Math.sin(decr) * Math.sin(alat))
/ (Mat h. cos(decr) * Math.cos(alat));
daylen = 24.0 * (1.570796 - Math.atan(csh /
Mat h.sqrt (1. - csh * csh))) / Math.Pl;

There are pro and cons for using embedded and attached component meta data. External meta data enables clean
and neutral computational components parts with no framework dependency. However, two separate files have to
be managed and have to kept in sync while doing component devel opment.

2.3. Attached XML
[tbd]

Appendix C. Recommended Practices

This Chapter discusses genera best practices with respect to model development. Those practices may or may
with respect to easy language interoperability, ...

1. FORTRAN Coding Conventions

This document addresses coding conventions for OMS components and scientific code written in Java and the
FORTRAN programming language.

The purpose of this document is to ensure that new FORTRAN code will be as portable and robust as possible,
as well as consistent throughout the system. It builds upon commonly shared experience to avoid error-prone
practices and gathers guidelines that are known to make codes more robust.

This document coversitemsin order of decreasing importance (see below), deemed to be important for any code.
It is recognized in the spirit of this standard that certain suggestions which make code easier to read for some
people (e.g. lining up attributes, or using al lower case or mixed case) are subjective and therefore should not have
the same weight as techniques and practices that are known to improve code quality. For this reason, the standards
within this document are divided into three components; Standards, Guidelines and Recommendations:

Required Aimed at ensuring portability, readability and robustness. Compliance with this category is
mandatory.

Recommended Good practices. Compliance with this category is strongly encouraged. The casefor deviations
will need to be argued by the programmer.

Encouraged Compliance with this category is optional, but is encouraged for consistency purposes.

Depending on the projects, programmer may opt to adhereto all threelevelsor just the two first. All projects must
adhere at least to the mandatory standards.

1.1. General Good Practices

These usually help in the robustness of the code (by checking interface compatibility for example) and in the
readability, maintainability and portability. They are reminded here:

 Encapsulation: Use of modules for procedures, functions, data.

» Use Dynamic Memory allocation for optimal memory usage.

 Derived types or structures which generally lead to stable interfaces, optimal memory usage, compactness, etc.
» Optional and keyword argumentsin using routines.

« Functions/subroutines/operators overloading capability.

* Intrinsic functions: bits, arrays manipulations, kinds definitions, etc.

1.2. Interoperability and Portability

Required

* Source code must conform to the ISO FORTRAN 95 standard.

» No use shall be made of compiler-dependent error specifier values (e.g. IOSTAT or STAT values).

» No compiler- or platform-dependent extensions shall be used.

85

Recommended Practices

* Source code must compiled and run under gfortran that is part of the GNU Compiler Collection.
Recommended

* Note that STOP is a F90/95 standard. EXIT(N) is an extension and should be avoided. It is recognized that
STOP does not necessarily return an error code. If an error code must be passed to a script for instance, then
the extension EXIT could be used but within a central place, so that to limit its occurrences within the code
to asingle place.

* Precision: Parameterizations should not rely on vendor-supplied flagsto supply adefault floating point precision
or integer size. The F90/95 KIND feature should be used instead.

» Do not use tab characters in the code to ensure it will ook as intended when ported. They are not part of the
FORTRAN characters set.

Encouraged

* For applications requiring interaction with independently-devel oped frameworks, the use of KIND type for al
variables declaration is encouraged to facilitate the integration.

1.3. Readability

Required

» Usefreeformat syntax

» Use consistent indentation across the code. Each level of indentation should use at |east two spaces.
» Use modulesto organize source code.

» FORTRAN keywords (e.g., DATA) shall not be used as variable names.

» Use meaningful, understandable names for variables and parameters. Recognized abbreviations are acceptable
as ameans of preventing variable names getting too long.

» Each externally-called function, subroutine, should contain aheader. The content and style of the header should
be consistent across the system, and should include the functionality of the function, as well as the description
of the arguments, the author(s) names. A header could be replaced by alimited number of descriptive comments
for small subroutines.

» Magic numbers should be avoided; physical constants (e.g., pi, gas constants) should never be hardwired into
the executable portion of a code; use PARAMETER statements instead.

* Hard-coded numbers should be avoided when passed through argument lists since acompiler flag, which defines
adefault precision for constants, cannot be guaranteed.

Recommended
* Use construct names to name loops, to increase readability, especially in nested loops.
» Similarly, use construct names in subroutines, functions, main programs, modules, operator, interface, etc.

* Include comments to describe the input, output and local variables of all procedures. Grouping comments for
similar variables is acceptable when their names are explicit enough.

» Use comments as required to delineate significant functional sections of code.
» Do not use FORTRAN statements and intrinsic function names as symbolic names.

* Use named parameters instead of “magic numbers’; REAL, PARAMETER :: PI=3.14159, ONE=1.0

86

Recommended Practices

Do not use GOTO statements. These are hard to maintain and complicate understanding the code. If absolutely
necessary to use GOTO (if using other constructs complicates the code structure), thoroughly document the
use of the GOTO.

Encouraged

When writing new code, adhere to the style standards within your own coding style. When modifying an old
code, adhere to the style of the existing code to keep consistency.

Use the same indentation for comments as for the rest of the code.

Functions, procedures, data that are naturally linked should be grouped in modules.

Limit to 80 the number of characters per line (maximum alowed under 1SO is 132)

Use of operators <, >, <=, >=, ==, /= isencouraged (for readability) instead of .It., .gt., .le., .ge,, .eq., .ne.

Modules should be named the same name as the files they reside in: To simplify the makefiles that compile
them. Consequently, multiple modulesin asingle file are to be avoided where possible.

Use blanks to improve the appearance of the code, to separate syntactic elements (on either side of equal signs,
€tc) in type declaration statements

Always use the :: notation, even if there are no attributes.
Line up verticaly: attributes, variables, comments within the variables declaration section.
Remove unused variables

Remove code that was used for debugging once this is complete.

1.4. Robustness

Required

Use Implicit NONE in &l codes: main programs, modules, etc. To ensure correct size and type declarations
of variableg/arrays.

Use PRIVATE in modules before explicitly listing data, functions, procedures to be PUBLIC. This ensures
encapsulation of modules and avoids potential naming conflicts. Exception to previous statement is when a
moduleis entirely dedicated to PUBLIC data/functions (e.g. a module dedicated to constants).

Initialize all variables. Do not assume machine default value assignments.

Do not initialize variables of one type with values of another.

Recommended

Do not use the operators == and /= with floating-point expressions as operands. Check instead the departure of
the difference from a pre-defined numerical accuracy threshold (e.g. epsilon comparison).

In mixed mode expressions and assignments (where variables of different typesare mixed), thetype conversions
should bewritten explicitly (not assumed). Do not compare expressions of different typesfor instance. Explicitly
perform the type conversion first.

No include files should be used. Use modulesinstead, with USE statementsin calling programs.

Structures (derived types) should be defined within their own module. Procedures, Functions to manipulate
these structures should also be defined within this module, to form an object-like entity.

Procedures should be logicaly flat (should focus on a particular functionality, not several ones)

87

Recommended Practices

* Module PUBLIC variables (global variables) should be used with care and mostly for static or infrequently
varying data.

Encouraged
» Use parentheses at all times to control evaluation order in expressions.

» Useof structuresisencouraged for amore stabl einterface and amore compact design. Refer to structure contents
with the % sign (e.g. Absor bent s%Mt er Vapor).

1.5. Arrays

Required

* Subscript expressions should be of type integer only.

» When arrays are passed as arguments, code should not assume any particular passing mechanism.
Recommended

e Useof arraysisencouraged as well asintrinsic functions to manipulate them.

» Use of assumed shapesis finein passing vectorgarrays to functiong/arrays.

Encouraged

» Declare DIMENSION for al non-scalars

1.6. Dynamic Memory Allocation / Pointers
Required

e Useof dlocatable arraysis preferred to using pointers, when possible. To minimize risks of memory leaks and
heap fragmentation.

» Useof pointersisalowed when declaring an array in a subroutine and making it available to acalling program.

» Alwaysinitialize pointer variablesintheir declaration statement usingthe NULL () intrinsic. INTEGER, POINT-
ER :: x=>NULL()

» The preferable mechanism for dynamic memory allocation isautomatic arrays, asopposedto ALLOCATABLE
or POINTER arrays for which memory must be explicitly allocated and deallocated; space alocated using
ALLOCATABLE or POINTER must be explicitly freed using the DEALLOCATE statement.

Recommended
» Alwaysdeallocate allocated pointersand arrays. Thisisespecially important inside subroutinesand insidel oops.

» Always test the success of a dynamic memory allocation and deallocation - the ALLOCATE and DEALLO-
CATE statements have an optional argument to allow this.

 Inagiven program unit do not repeatedly ALLOCATE space, DEALLOCATE it and then ALLOCATE alarger
block of space - thiswill almost certainly generate large amounts of unusable memory.

Encouraged

» Use of dynamic memory alocation is encouraged. It makes code generic and avoids declaring with maximum
dimensions.

» For simplicity, use Automatic arrays in subroutines whenever possible, instead of allocatable arrays.

88

Recommended Practices

1.7. Looping

Required

* Do not use GOTO to exit/cycle loops, use instead EXIT or CY CLE statements.
Recommended

* No numbered DO loops such as (DO 10 ...10 CONTINUE).

1.8. Functions/Procedures

Required

» The SAVE statement is discouraged; use module variables for state saving.

Do not use an entry in afunction subprogram.

* Functions must not have pointer results.

e The names of intrinsic functions (e.g., SUM) shall not be used for user-defined functions.

» Procedures that return a single value should be functions; note that single values could also be user-defined
types.

« All communication with the modul e should be through the argument list or it should accessits modul e variables.
Recommended

 All dummy arguments, except pointers, should include the INTENT clause in their declaration

» Limit use of type specific intrinsic functions (e.g., AMAX, DMAX - use MAX in al cases).

» Avoid statically dimensioned array arguments in a function/subroutine.

e Check for invalid argument values.

Encouraged

« Error conditions. When an error condition occurs inside a function/procedure, a message describing what went
wrong should be printed. The name of the routine in which the error occurred must be included. It is acceptable
to terminate execution within a package, but the developer may instead wish to return an error flag through
the argument list.

 Functions/procedures that perform the same function but for different types/sizes of arguments, should be over-
loaded, to minimize duplication and ease the maintainability.

» When explicit interfaces are needed, use modules, or contain the subroutines in the calling programs (through
CONTAINS statement), for simplicity.

» Do not use external routines as these need interface blocks that would need to be updated each time the interface
of the external routine is changed.

1.9.1/0

Required

* |/O statements on external files should contain the status specifier parameters err=, end=, iostat=, as appropriate.
 All global variables, if present, should be set at the initialization stage.

Recommended

89

Recommended Practices

» Avoid using NAMELIST 1/O if possible.
» Usewrite rather than print statements for non-terminal 1/0.

» Use Character parameters or explicit format specifiersinside the Read or Write statement. DO not use labeled
format statements (outdated).

1.10. FORTRAN Features that are obsolescent and/or discour-
aged
Required

* No Common blocks. Modules are a better way to declare/store stetic data, with the added ability to mix data of
various types, and to limit access to contained variables through use of the ONLY and PRIVATE clauses.

* No assigned and computed GO TOs - use the CASE construct instead
* No arithmetic | F statements - use the block IF construct instead

» Avoid DATA, ASSIGN Labeled DO BACKSPACE Blank COMMON, BLOCK DATA
* Use REAL instead of DOUBLE PRECISION

» Branch to END IF outside the block IF

* DO non-integer Control

* Hollerith Constants

* PAUSE

* multiple RETURN

» Alternate RETURN

Recommended

» Do not make use of the equivalence statement, especially for variables of different types. Use pointersor derived
types instead.

Encouraged

* No implicitly changing the shape of an array when passing it into a subroutine. Although actually forbidden
in the standard it was very common practice in FORTRAN 77 to pass 'n' dimensional arrays into a subroutine
where they would, say, be treated as a 1 dimensional array. This practice, though banned in FORTRAN 90, is
still possible possible with external routines for which no Interface block has been supplied. This only works
because of assumptions made about how the data is stored.

1.11. Source Files

Required

» Document the function interface: argument name, type, unit, description, constraint,defaults.

» The INCLUDE statement shall not be used; use the USE statement instead.

Recommended

 Try to limit source column length, including comments, to 80 columns (or follow language specific limits).

» A component should not exceed 300-500 effective lines of code, be efficient with your coding.

90

Recommended Practices

Use blank lines (or lines with a standard character in column 1) to separate statement blocks to improve code
readability.

Apply consistent indentation method for code.

M odule/subprogram names shall be lower case; the name of afile containing a module/subprogram shall be the
modul e/subprogram name with the suffix *.f90."

Encouraged

Clearly separate declaration of argument variables from declaration of local variables.

Use descriptive and unique names for variables and subprograms (so as to improve the code readability and
facilitate global string search);

try to limit name lengths to 12-15 characters.
Indent continuation linesto ensure that, for example, parts of amulti-line equation line up in areadable manner.

Start comment text with a standard character (e.g. !, C, etc.); if astand-alone line then start comment character
in the first column.

1.12. General Coding Guidelines

Reduce or eliminate global variable usage.

Attempt to limit the number of argumentsin argument list - long lists make it hard to reuse.
Limit of only one return point per component.

Use exceptions as error indicators if supported.

Components should be specific to one and only one purpose.

Components with side effects are not alowed (e.g. Don't mix 1/O code with computational code).
Program against a standard (e.g., ANSI C, C++, Java, FORTRAN 77/90/95) -

Make sure your code compiles under different compilers and platforms.

Use preprocessor directives for adaptation to different architectures/compilers/OS.

Make /O specific components separate from computational components.

Avoid static allocation of data (compile time allocation).

Be most specific with your data types.

Avoid using custom data types for argument types.

91

Appendix D. License

OMS3 islicensed under the Open Software License ("OSL") version 3.0:

1) Grant of Copyright License. Licensor grants You a worldwide, royalty-free, non-exclusive, sublicensable
license, for the duration of the copyright, to do the following:

a) to reproduce the Original Work in copies, either alone or as part of a collective work;

b) to trandate, adapt, alter, transform, modify, or arrange the Original Work, thereby creating
derivative works ("Derivative Works") based upon the Original Work;

¢) to distribute or communicate copies of the Original Work and Derivative Works to the pub-
lic, with the proviso that copies of Origina Work or Derivative Works that Y ou distribute or
communicate shall be licensed under this Open Software License;

d) to perform the Original Work publicly; and €) to display the Original Work publicly.

2) Grant of Patent License. Licensor grants Y ou aworldwide, royalty-free, non-exclusive, sublicensablelicense,
under patent claims owned or controlled by the Licensor that are embodied in the Original Work as furnished by
the Licensor, for the duration of the patents, to make, use, sell, offer for sale, have made, and import the Original
Work and Derivative Works.

3) Grant of Source Code License. The term "Source Code" means the preferred form of the Original Work for
making modificationsto it and all available documentation describing how to modify the Original Work. Licensor
agrees to provide a machine-readable copy of the Source Code of the Original Work along with each copy of
the Original Work that Licensor distributes. Licensor reserves the right to satisfy this obligation by placing ama-
chine-readable copy of the Source Code in an information repository reasonably calculated to permit inexpensive
and convenient access by You for aslong as Licensor continues to distribute the Original Work.

4) Exclusions From License Grant. Neither the names of Licensor, nor the names of any contributors to the
Original Work, nor any of their trademarks or service marks, may be used to endorse or promote products de-
rived from this Original Work without express prior permission of the Licensor. Except as expressly stated here-
in, nothing in this License grants any license to Licensor's trademarks, copyrights, patents, trade secrets or any
other intellectual property. No patent license is granted to make, use, sell, offer for sale, have made, or import
embodiments of any patent claims other than the licensed claims defined in Section 2. No license is granted to
the trademarks of Licensor even if such marks are included in the Origina Work. Nothing in this License shall
be interpreted to prohibit Licensor from licensing under terms different from this License any Original Work that
Licensor otherwise would have aright to license.

5) External Deployment. Theterm "External Deployment" means the use, distribution, or communication of the
Original Work or Derivative Worksin any way such that the Original Work or Derivative Works may be used by
anyone other than Y ou, whether those works are distributed or communicated to those persons or made available
as an application intended for use over a network. As an express condition for the grants of license hereunder,
You must treat any External Deployment by You of the Original Work or a Derivative Work as a distribution
under section 1(c).

6) Attribution Rights. Y ou must retain, in the Source Code of any Derivative Worksthat Y ou create, all copyright,
patent, or trademark noticesfrom the Source Code of the Original Work, aswell asany notices of licensing and any
descriptive text identified therein as an "Attribution Notice." Y ou must cause the Source Code for any Derivative
Worksthat Y ou create to carry a prominent Attribution Notice reasonably cal culated to inform recipientsthat Y ou
have modified the Original Work.

7) Warranty of Provenance and Disclaimer of Warranty. Licensor warrants that the copyright in and to the
Original Work and the patent rights granted herein by Licensor are owned by the Licensor or are sublicensed to
Y ou under the terms of this License with the permission of the contributor(s) of those copyrights and patent rights.
Except asexpressly stated in theimmediately preceding sentence, the Original Work isprovided under thisLicense
onan"ASIS' BASISand WITHOUT WARRANTY, either express or implied, including, without limitation, the
warranties of non-infringement, merchantability or fitness for a particular purpose. THE ENTIRE RISK ASTO

92

License

THE QUALITY OF THE ORIGINAL WORK ISWITH YOU. ThisDISCLAIMER OF WARRANTY constitutes
an essentia part of this License. No license to the Origina Work is granted by this License except under this
disclaimer.

8) Limitation of Liability. Under no circumstances and under no legal theory, whether in tort (including negli-
gence), contract, or otherwise, shall the Licensor be liable to anyone for any indirect, special, incidental, or con-
sequential damages of any character arising as aresult of this License or the use of the Original Work including,
without limitation, damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and
all other commercial damages or losses. This limitation of liability shall not apply to the extent applicable law
prohibits such limitation.

9) Acceptance and Termination. If, at any time, You expressly assented to this License, that assent indicates
your clear and irrevocable acceptance of this License and all of its terms and conditions. If You distribute or
communicate copies of the Original Work or a Derivative Work, You must make a reasonable effort under the
circumstances to obtain the express assent of recipients to the terms of this License. This License conditions your
rights to undertake the activities listed in Section 1, including your right to create Derivative Works based upon
the Original Work, and doing so without honoring these terms and conditions is prohibited by copyright law and
international treaty. Nothing in this License isintended to affect copyright exceptions and limitations (including
"fair use" or "fair dealing"). This License shall terminate immediately and Y ou may no longer exercise any of the
rights granted to Y ou by this License upon your failure to honor the conditions in Section 1(c).

10) Termination for Patent Action. This License shall terminate automatically and Y ou may no longer exercise
any of therights granted to Y ou by this License as of the date Y ou commence an action, including a cross-claim or
counterclaim, against Licensor or any licensee alleging that the Original Work infringes a patent. This termination
provision shall not apply for an action alleging patent infringement by combinations of the Original Work with
other software or hardware.

11) Jurisdiction, Venue and Governing L aw. Any action or suit relating to this License may be brought only in
the courts of ajurisdiction wherein the Licensor resides or in which Licensor conducts its primary business, and
under the laws of that jurisdiction excluding its conflict-of-law provisions. The application of the United Nations
Convention on Contracts for the International Sale of Goods is expressly excluded. Any use of the Original Work
outside the scope of this License or after its termination shall be subject to the requirements and penalties of
copyright or patent law in the appropriate jurisdiction. This section shall survive the termination of this License.

12) Attorneys Fees. In any action to enforce the terms of this License or seeking damages relating thereto,
the prevailing party shall be entitled to recover its costs and expenses, including, without limitation, reasonable
attorneys feesand costsincurred in connection with such action, including any appeal of such action. Thissection
shall survive the termination of this License.

13) Miscellaneous. If any provision of this License is held to be unenforceable, such provision shall be reformed
only to the extent necessary to make it enforceable.

14) Definition of " You" in ThisLicense. "You" throughout this License, whether in upper or lower case, means
an individual or alegal entity exercising rights under, and complying with all of the terms of, this License. For
legal entities, "You" includes any entity that controls, is controlled by, or is under common control with you. For
purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management
of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding
shares, or (iii) beneficial ownership of such entity.

15) Right to Use. You may use the Original Work in all ways not otherwise restricted or conditioned by this
License or by law, and Licensor promises not to interfere with or be responsible for such uses by Y ou.

16) Moadification of This License. This License is Copyright © 2005 Lawrence Rosen. Permission is granted
to copy, distribute, or communicate this License without modification. Nothing in this License permits You to
modify this License as applied to the Original Work or to Derivative Works. However, Y ou may modify the text
of this License and copy, distribute or communicate your modified version (the "Modified License") and apply
it to other original works of authorship subject to the following conditions: (i) Y ou may not indicate in any way
that your Modified License is the "Open Software License” or "OSL" and you may not use those names in the
name of your Modified License; (ii) Y ou must replace the notice specified in the first paragraph above with the
notice "Licensed under <insert your license name here>" or with a notice of your own that is not confusingly

93

License

similar to the noticein this License; and (iii) Y ou may not claim that your original works are open source software
unlessyour Modified License has been approved by Open Source Initiative (OSI) and Y ou comply with itslicense
review and certification process.

94

Index

J
INA, 65

K
Key Value Pairs, 24

95

