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Abstract

OMS is a framework for ago-environmental model development, data provisioning, testing, validation, and de-
ployment. It provides a bridge for transferring technology from the research organization to the program delivery
agency. The framework provides a consistent and efficient way to create science components, build models, cal-
ibrate and test them, modify and adjust as the science advances, and re-purpose for emerging customer require-
ments. OMS was first released in 2004, and subsequently integrated into the USDA Natural Resources Conserva-
tion Service technical architecture in 2008.

This Handbook targets the model developer, integrator, and user. It provides a comprehensive overview and ref-
erence about developing, integrating, running and deploying environmental simulation models using this frame-
work. It explains the steps required to create its fundamental building blocks, the components, and integrate them
into a more complex model. Model execution is demonstrated for testing, calibration, and uncertainty analysis,
illustrating the flexible options available once the model is within the framework.

With OMS 3.0, framework invasiveness to the model has been minimized, improving portability, adaptability and
infrastructure integration. The emphasis with this release was focused on (i) simplifying component integration,
(ii) implicit auto-scaling of simulation models in multi-core and multi-processor environments, (iii) providing for
modeling simulation traceability and integrity, and (iv) auto-documentation of models and simulations.

An annotation standard was developed for those features. That standard promotes straightforward integration of
simulation code written in various programming languages with a low impact on the developer. The framework
was also designed with strong support for multi-threading, the concurrent processing of multiple simulation tasks.
The modeler and integrator does not have to know parallel programming knowledge is required to build paral-
lelized models. OMS 3 enables seamless transitioning from multi-core modeling on a desktop to a clustered pro-
cessors in a computing cloud.

The framework addresses traceability requirements of agencies with program tracking and financial management
responsibilities. Agencies running simulation models can leverage OMS to create auditable simulation trails, based
on Secure Hash Algorithms, a Federal Information Processing (FIP) Standard. A related features is the capability
to auto-document a model and simulation structure into an open document standard such as Docbook5+.

In summary, the OMS framework supports a work flow to develop and deliver agro-environmental models to user
organizations with the following primary steps: (1) develop components, (2) integrate components into models,
(3) develop simulations, and (4) deploy and run simulations. The final step of running simulations is integrated
into the business work flow of the user organization.
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Introduction
The Object Modeling System (OMS) is an integrated environmental modeling framework. Frameworks in gener-
al are helping to create and use software applications by providing common and reoccurring functionality. Web
frameworks, user interface frameworks, or frameworks for database integration are examples for successful frame-
work implementations within general software applications. They deal with complicated, mostly infrastructure
aspects by abstracting it to a level that is appealing for the non-specialist.

What characterizes modeling frameworks? They are expected to support the modeling process, for example,
straightforward model code development, seamless model access to data, and data analysis and visualization.
Some modeling frameworks also focus on high performance computing and are specifically tailored for particular
modeling domains such as climate modeling.

Driving forces for framework adoption within the modeling community are (1) saving time and reducing costs,
(2) providing quality assurance and control, (3) re-purposing model solutions for new business needs, (4) ensuring
consistency and traceability of model results, and (5) mastering computing scalability to solve complex modeling
problems. At the bottom line the model developer should be able to efficiently develop and deliver a simulation
model. As pointed out in [Rizzoli2005], the modeler should experience an immediate return on investment by
adopting a framework designed to increase modeling productivity.

The Object Modeling System (OMS) is a integrated modeling framework designed to support the delivery of sci-
ence relating to agricultural and natural resource management in programs administered by the U.S. Department
of Agriculture (USDA). The OMS architecture has been designed so that it can inter operate with other frame-
works supporting agro-environmental modeling in Europe, Australia, North America, and elsewhere. Its principle
architecture is shown in Figure 1, “OMS3 Principle Architecture”. It very much assembles the generic architecture
for environmental integrated modeling frameworks as described in [Rizzoli2008].

Figure 1. OMS3 Principle Architecture

There are four foundations identified for OMS3 (Figure 1, “OMS3 Principle Architecture”): modeling resources,
the system knowledge base, development tools, and the modeling products. OMS3 core consists of an internal
knowledge base and development tools for model and simulation creations. The system derives information out of
various modeling resources, such as data bases, services, version control systems, or other repositories, transforms
it into a framework knowledge bases that the OMS3 development tools use to create modeling products. Products
include model applications; simulations that support calibration, optimization, and parameter sensitivity analysis;
output analyses; audit trails; and documentation

Implementing this architecture may require a commitment to a structured model and simulation development
process, such as the use of a version control system for model source code management, or a simulation run
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database database to store audit trails. Such features are important for institutionalized implementation of the
framework, however, a single modeler may not be required to adhere to it.

1. Basic Concepts
There are a few simple concepts to master in order to create and use models in OMS3. Like other modeling frame-
works such as OpenMI [Gregersen2007], CCA [Bernholdt2006], ESMF [Collins2005], and CMP [Moore2007],
OMS3 adheres to the notion of objects as the fundamental building blocks for a model and to the principles of
component based software engineering for the model development process.

Component-based software engineering (CBSE) has existed in one form or another for a number of years. The
advantages of constructing modular software are well known within the software community. Modularity is a
general concept which applies to the development of software in a fashion which allows individual modules to be
developed, often with a standardized interface to allow modules to communicate. In fact, the kind of separation of
concerns between objects in an object-oriented language is much the same concept as for modules, but on a larger
scale. Typically, partitioning a system into modules helps minimize coupling, which should lead to 'easier-to-
maintain' code.

Initially, software components were viewed almost exclusively as source code modules. In recent years, however,
the popular use of the term software component has been with reference to so-called “binary” components. Binary
component are individual software artifacts that exist in compiled form, and are typically ready for distribution.
A wide variety of technologies have been developed to support the packaging of binary components.

OMS3 as a framework is object-oriented, the models within the framework are objects or components as under-
stood in CBSE. However the design of OMS3 is unique in one important aspect. It is considered non-invasive
and sees models and components as plain objects with meta data by means of annotations. Modelers do not have
to learn an extensive object-oriented Application Programming Interface (API), nor do they have to comprehend
complex design patterns. Instead OMS3 plain objects are perfect fits as modeling components as long as they
communicate the location of their (i) processing logic, and (ii) data flow. Annotations do this in a descriptive, non-
invasive way. Non-invasive lightweight frameworks principles based on plain objects have proven successful in
other application fields [Richardson2006] and are expected to pay dividends for agro-environmental modeling.

Why is a non-invasive approach important?

• Most agro-environmental modelers, at least early in the development life cycle, are natural resource scientists
with experience in programming (often self-taught), but not software architecture and design. Most modeling
projects do not have the luxury employing an experienced software engineer or computer scientist. Software
engineers understand and apply complex design patterns, UML diagrams, advanced object-oriented techniques
such as parameterized types, or higher level data structures and composition. A hydrologist or other natural
resource scientist usually lacks these skills.

The targeted use of object-oriented analysis and design principles for modeling could be productive for a specific
model having limited expectation for reuse and extensibility. However, for a framework, the extensive use of
object-oriented features for models is questionable since it puts an undesirable burden on the scientist.

• The agro-environmental modeling community maintains a large number of legacy models. Some methods and
equations still in use were developed as long as 60 years ago. What has changed and will continue to change is
the infrastructure around them that delivers the output from these models. Smart phones and computing clouds
are emerging technologies, to which lightweight, non-invasive frameworks can easily adapt.

• A lightweight framework adjusts to an existing design as opposed to define its own specification or API. The
learning curve small, as there is no complex API to learn or new data types to manage. This has some very
practical implications for a modeler, since there is no major paradigm shift in using existing modeling code and
libraries. Committing to a non-invasive framework is more likely than for the more heavyweight counterparts,
since the component integrated in the lightweight framework can still have a 'life' outside on other platforms,
and can keep evolving there.

Object-oriented techniques were promoted over the last decade to be the solution for natural resource modeling.
Well designed object-oriented models are hard to design if the expected outcome is expected to contain all the
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promises of reuse, extensibility, and flexibility. Design of complex systems requires experience, anticipation of
future use cases, freedom to discard a dead-end design, and most of all: time and resources. In addition environ-
mental modeling perspectives, concepts, and approaches vary, which is hard to capture in a single object-oriented
design.

Since OMS3 is a non-invasive modeling framework, the modeler does not need an extensive knowledge of ob-
ject-oriented principles to make the model-framework integration happen. Creating a modeling object is very
easy. There are no interfaces to implement, no classes to extend and polymorphic methods to overwrite, no frame-
work-specific data types to replace common native language data types1 etc. Instead OMS3 uses meta data by
means of Annotations to specify and describe "points of interest" for existing data fields and methods for the
framework. Annotations are explained in detail in Appendix B. Chapters 2, 3, and 4 show their use within a mod-
el. Within a modeling object any complex internal object-oriented design can be used as needed, however, the
framework does not depend on any object-oriented contract.

1.1. Model Components

Components are the main building blocks of simulation models in OMS. Traditionally, scientific applications
are designed as large blocks as hand-crafted code, which usually results in a monolithic application. Such model
applications are not designed to have parts of them easily re-purposed if a related application will be required in
the future. A major disadvantage of building monolithic simulation models is that conceptual boundaries within
the model are not captured or not there at all.

In this handbook we refer to a Component as a modeling entity, that implements one conceptual modeling concept,
is implemented as a plain (Java) object that comes along with annotations. A component can be hierarchical, it
may contains other, finer grained components contributing to the larger goal. It is a black-box that exposes its
framework relevant aspects via meta data.

The component represents a sufficient level of complexity so that someone can use it in an executable simulation
is called a Model. Therefor each component can become a model. The model is usually the top level component
within a component hierarchy.

Figure 2. Principle Component Structure

Figure 2, “Principle Component Structure” shows the principle design of a component in OMS3. Like all modeling
frameworks OMS3 provides for the same features: Isolating a computational aspect in a component, facilitating

1It was widely observed in framework implementation including OMS 2.x and before, that component interoperability can only achieved by
using framework supplied data types that usually are redundant equivalences to native language types. Such a requirement leads to even more
undesired coupling between the model and application and results in a framework lock-in.
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directed data flow (slots, or exchange items) and manage various execution phases of a component. As pointed out
in [Peckham2008], an "Initialize #Run #Finalize" (IRF) is a common life cycle for almost all simulation models.
OMS3 offers only annotations to allow a user to specify those framework required aspects on top of plain object.

The term Component refers to a concept in software development which extends the re usability of code from the
source level to the executable. Components are software units that are context-independent both in the conceptual
and technical domain. A component is a self contained software unit that is well separated from its environment.

The component approach takes object-oriented designs to the next level. While object-oriented design methods
focus on abstraction, encapsulation, and localization of data and methods, they can also lead to simulation systems
where objects are highly co-dependent. To remove this limitation, a more structured process was introduced in
model development and applied to OMS3: component-oriented modeling. It emphasizes the component as ob-
ject-oriented software which can be developed and tested independently, and delivered as a unit. It provides its
services through well defined interfaces.

Component implementations in general have proven to support reuse in a more efficient way than just using
object-oriented methods. There are some general benefits of using components for building complex systems.

• Components are designed with a standard, well defined interface in mind. Such a published interface hides
the implementation of the component logic and forces an abstraction level which separates the offered contract
for communication from its implementation.

• Components are self contained units from the conceptual and technical perspective. They can be developed
and tested individually. Finally they are packaged and are delivered to be used in several applications.

• The use of components simplifies the construction of complex systems since they change the way these are
built. As opposed to programming the entire model, it can be composed using components. Some parts of a
model may originate from legacy code sources, and some may be new code. A component approach facilitates
the integration of legacy and new code.

The use of components helps face the challenge building complex simulation models by reducing model software
complexity and overcome the limitations of monolithic, highly coupled model implementations.

1.1.1. Model Component Base

OMS3 also introduces the concept of a model base, considered to contain two or more instances of a model
designed to address the modeling needs of a customer. For example, the customer may require a model apply to
business scenarios across diverse regions. Therefore the solution could involve several instances of the model,
each modified, configured, and validated for a particular region.

Likewise, the customer may require a model be used in different contexts within a business function, and the
solution may involve model instances that fit into the various business work flows. Knowing these requirements
up front is important for architecting the model and deploying as instances aligned with business needs. The model
instances should be managed as a model base. Model base components (including the model and its instances)
should be managed within an OMS3 modeling project and stored in the OMS3 Component Library.

1.2. Simulations

The other fundamental concept in OMS3 are Simulations. Simulations are giving a model a purpose, they are the
model applications. Usually a simulation consists of the

• Model that is to be used which is in most cases the top level component.

• Location and time sensitive input data such as parameter files or climate data sets

• Output management and analysis such as model efficiencies, statistical summaries, graphs, and plots.

• Type of execution, such as single execution, parameter sampling execution, an uncertainty analysis, or a fore-
cast execution using synthetic input, etc.

• Execution environment such as the local computer, a remote box, or a cluster of computer at a remote location.
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OMS3 defines a set of various simulation types that are discussed in Chapter ???. Figure 3, “Principle Simulation”
shows the concept of a simulation.

Figure 3. Principle Simulation

How to create a simulation? OMS3 employs a simple but powerful concept called Domain Specific Language
(DSL) to provide for a concise, robust, and flexible representation of simulations. A DSL in general is a mini-lan-
guage aiming at representing constructs for a given domain. Our domain is modeling, therefore the vocabulary
of this DSL very much reflects modeling concepts.A DSL is really a language extension dealing with a design
pattern such as building a hierarchy of objects in a simple, descriptive way.

With a DSL, simulations can be created and executed from different tools such as IDEs, the OMS3 modeling
console, the command line, or any application that embeds a OMS3 runtime.

The use of DSLs over other approaches such as XML for a structured setup of simulations and meta data has
many advantages. XML tends to be verbose when supported by a schema, parsing XML does not account for
programming languages data types, or conversions. DSLs instead offer an elegant and concise construction of
simulations while providing for implicit data types. The specification of the modeling DSL elements is part of
this handbook.

2. Audience
Modeling in general is a complex process that refers to many activities such as data management, coding, output
analysis, etc. This defines the type of use for a framework such as OMS3. Scientist may developing an operational
model with a software engineer, a technician is preparing data to be used in the simulation by changing its format,
a technical service provider might perform model calibrations to obtain a fitting parameter set, or a stakeholder is
using a canned model simulation to get some answers to a problem. Also, a third party company might want to
include the framework into their own application suite and needs to integrate it very low level.

OMS3 can support many of those common activities. The table below shows different kinds of audiences specific
in context to OMS as a framework supporting various modeling aspects. Other classifications exist [Rizzoli2008],
Good Modeling practice).

Table 1. Framework Audience

Frame-
work User

Description Expertise  Activities Product Example

System Integra-
tor

integrates a mod-
el or modeling
framework into

IT Infrastruc-
ture architectures,
system design,

Integrating the
framework into
large scale ap-

e.g. a web service
that employs the
framework

software engi-
neer, system inte-
grator
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Frame-
work User

Description Expertise  Activities Product Example

a larger business
application

OMS3 Frame-
work integration
API

plication using
IDEs

Model Compo-
nent Developer

developing soft-
ware code

OMS3 Annota-
tions and compo-
nent integration
API

Coding using an
IDE and relat-
ed build/test and
version control
tools

Model/compo-
nent executable

Research scien-
tist, software en-
gineer, Domain
expert

Simulation De-
veloper

setting up a simu-
lation for a specif-
ic use

OMS simulation
definitions, Mod-
el parameteriza-
tion, data formats,

Using simula-
tion definitions
for data provi-
sioning and set-
up, calibration,
uncertainty anal-
ysis and opti-
mization

A runnable sim-
ulation (e.g. cal-
ibrated parameter
and data set) for
a given area and
problem.

Research scien-
tist, Technical
Service Provider,

Simulation Us-
er

using a simulation
to get an answer to
a problem

knowledge about
the proper use of
a simulation with-
in a provided do-
main context

Using the sim-
ulation with an
application and
selecting data
sets / parameter
to be used

An quantitative
answer to a prob-
lem

Consultant,
Farmer, Manager

The are most likely overlaps of activities, since a framework user is usually involved in many activities.

3. OMS 3.0 Feature Summary
This handbook describes the most recent incarnation of OMS version 3.0 (referred as OMS3). This version dif-
fers from previous versions in that the support for framework-based model development has widened in several
respects. The modifications and enhancements respond to experience from the user community.

What are the summarized features, improvements and characteristics of OMS3?

1. OMS modeling is component-based.

It aims for only minimal requirements to call a plain Java object a OMS3 component. Existing legacy classes
are allowed to keep their identity, which means that once a component has been introduces into OMS3 it
is still usable outside of OMS3. OMS 3.0 is non-invasive. It minimizes the burden on a component/model
developer to build code into the framework by not imposing an API. There is almost no learning curve as
existing Java/Fortran/C/C++ code does not have to be changed. The modeler does not have to learn and use
framework data types, and does not have to comprehend communication patterns to parallelize the model. Most
if not all previous modeling frameworks have contained these intrusive features, and OMS 3.0 represents a
fundamental step to remove them.

2. OMS is based on the Java platform.

However it is inter operable with C,C++, and FORTRAN on all major operating systems and architectures.
Language interoperability. OMS 3.0 moves from a source centric Java Native Interface (JNI) strategy fo-
cused on FORTRAN to a DLL centric Java Native Access (JNA) integration that now supports all versions of
FORTRAN, C, and C++ on all major architectures in 32 and 64 bit. FORTRAN and C/C++ programmers can
continue to use their respective tools to create components and then use one of the Java IDEs to annotate and
assemble components into a model, create simulations for testing and validation, and package model instances
for deployment.

3. Components always execute multi-threaded.
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The default execution is multi-threaded. Sequential execution is just a specific case of multi-threaded execution
where the data flow requires the sequential execution of components. If data flow allows it, components are
being executed in parallel. No explicit thread coding is needed to make this happen. OMS models are data
flow driven. The execution of components is driven by data flow dependencies. There is no explicit/manual
control of an execution sequence of components.

4. Simulations as defined as DSLs.

OMS 3.0 adds a new tool set for model calibration, sensitivity and uncertainty analysis (such as GLUE, SCE,
MOCOM, and others) to the package suite. A consistent user experience in simulations is provided also for
existing types such as Ensemble Streamflow Prediction (ESP) and LUCA calibration.

5. Runtime flexibility for simulation execution

Models can now be executed in different environments that scale from a notebook to a computing cluster or
even a cloud such as Amazon’s Elastic Computing Cloud (EC2).

6. Wide range of System Integration options and development flexibility.

OMS3 can be integrated into almost any infrastructure at different framework integration levels. Models can
now be developed with any Integrated Development Environment (IDE), that supports at least Java. The con-
straint to use the custom OMS IDE platform (with version 2.2) has been removed. Models can now be devel-
oped using all major Java IDEs such as Netbeans, Eclipse, or IntelliJ.

How does is compare to its previous version OMS 2.2? It is easier to integrate OMS3 into an existing development
process, it scales into multi-core, multiprocessor environments, it makes model development easy by its non-
invasive nature. It lowers the burden for a modeler to take advantage of a modeling framework.

4. "Hello Modeler" - A first example

Let's create a very simple model that demonstrates all the basics involved with OMS3. It simulates nothing nu-
merically (we get to this later), it is rather the modeler’s variant of the usual "Hello World" example, which we
will call “Hello Modeler.” Later, the examples will become more comprehensive. This example shows the two
fundamental parts of modeling in OMS: Creating a

1. component and therefor a model and the executable code, and

2. a simulation, combining the model with input data sets and performing a simulation.

4.1. A First Model Component

For the Java modelers components are developed as Java classes (For FORTRAN and C/C++ modelers, Sec-
tion ???).

We create a new Java class named Component and save it as Component.java. The source file needs to be compiled
with javac using an IDE or just the command line compiler. Section ??? explains the details for setting up a
development environment and the classpath. Now, we have created the model source code and have compiled it.

As seen here, a component is a piece of plain Java code that is annotated with OMS specific meta data. Meta data
annotations (shown in bold) are a very easy to add and turn plain objects into components to be used within the
modeling framework.
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Example 1. First Component (Component.java)

 package helloworld;

 import oms3.annotations.*;              // 1.

 /**
  * First component 
  */
 public class Component {

    @Role(Role.PARAMETER)                // 2.
    @In public String message;           // 3.

    @Execute                             // 4.
    public void run() {
        System.out.println(message);
    }
 }

1. Adding the oms3.annotation package to the component associates it with the OMS frame-
work. This package defines OMS annotation types.

2. The @Role annotation gives its following field declaration the 'Parameter' identity.

3. The OMS oms3.annotations package defined @In annotation tags the field, that provides
input to the component, a message as a plain String in the case above. Note that the field
needs to be public like the class.

4. The annotation @Execute indicates the entry point for model execution. The run method now
gets called when OMS will execute the component. The method name is irrelevant here, the
annotation @Execute points to it.

The rest of the class is plain Java code. The class has to be public as shown above.

4.2. A First Simulation

As a next step we need to create the simulation to parameterize and run the just created model. Create a text file
called hello.sim with the following content. We define all the resource elements for the simulation, which are
assembled in a hierarchical way.
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Example 2. First Simulation (hello.sim)

 sim(name:"Hello") {                            // 1.
    resource "$work/dist/*.jar"                 // 2.
    model(classname:"helloworld.Component") {   // 3.
       parameter {                              // 4.
             message " Hello Modeler ..."       // 5.
       }
    }
 }

1. The element sim defines a simple simulation that runs a model in a single run. It has the name
'Hello" as shown. In curly brackets there are all the resources for this simulation.

2. First, the resource element lists all files, belonging to this simulation, all jar files in the dist
folder in the work directory. The value of work might be passed as a system property. The
jar files listed here by wild card expansion will be put into the model's classpath.

3. The model resource element specifies the class that represents the top level compo-
nent. The class name is full qualified, it must include the package name. The class
helloworld.Component was developed in the previous section.

4. The model contains the parameter, which should be passed from the simulation to the model
on startup. In out example the @In field message gets the value " Hello Modeler ..." as
input. The name as listed here in this simulation must exactly match the name of the field
in the model.

The sim element is a part of the OMS3 DSL for modeling. This DSL provides a simple descriptive syntax for
constructing model applications for different model to calibrate parameters, evaluate uncertainty and parameter
sensitivity, run model ensembles in a (cloud) cluster, or just simply execute.

With the simulation developed, we are ready to run the model. The OMS3 console provides the easiest way to load
the simulation, execute it and look at the result. The following chapters and sections will discuss more options
to run a simulation.

Start the console by clicking the  button as it provided at

http://oms.javaforge.com

Note

You need to have some recent Java 1.6 Runtime Environment installed to launch the
application. Download it from http://java.sun.com/javase/downloads.

With the console running, open the file hello.sim (you can also use it to write and create it in the first place).
It shows as tab in the upper part of the screen.

http://java.sun.com/javase/downloads
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Figure 4. Running the Simulation 'Greeting' using the OMS3 Console

Now hit the Run button to execute the simulation. The expected output appears in the lower part of the screen.
The string 'Hello Modeler' is passed from the simulation to the model component and is printed out at the lower
part of the console.

Congratulations, the first model and simulation in OMS3 is implemented.
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Chapter 1. Installation and Setup
OMS3 is based on the Java Platform, therefor it is usable in all major operating systems. Examples are Windows,
Linux, and MacOS, or OpenSolaris. Any environment supporting Java 1.6 can run OMS3. Different Java versions
are available for 32 and 64 bit architectures and processor types. All of those Java versions are suitable to run
OMS3 and its models. Please be aware that models using native systems components from a DLL or shared object
are not binary compatible across platforms, however pure Java models are.

1. Required Software
Download and install Java 1.6. The JDK 6 (Java SE Development Kit) is required for OMS3 model development,
the Java 1.6 Runtime Environment is sufficient. To obtain latest JDK, download it from:

http://java.sun.com/javase/downloads

Follow the installation instructions for your operating system during installation. Make sure the commands java
and javac are accessible in the PATH when using the command line interface.

2. Install and Setup OMS3
There are different options for installing OMS3 which are very much driven by its use case scenario. The OMS
Console allows to run en existing model, but does not support model development like an IDE. However an IDE
will give you the option to develop components by editing, compiling and packaging them.

2.1. Modeling Console

Install the JRE or JDK, launch the OMS3 Console  from:

http://oms.javaforge.com

You can test the successful installation of all the packages by executing this line in the OMS 3 Console:

Figure 1.1. Modeling Console
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The oms3.SimBuilder class has the method checkInstall() that verifies the presence and correct version of
required software such as Java. In the OMS3 Console, add the same command above and hit Ctrl+R (Run).

2.2. Integrated Development Environments (IDE)

You may also download a free Java IDE such as the Netbeans IDE, Eclipse or IntelliJ. Those IDEs might
also bundle Groovy language support out of the box (check the IDE, and download Groovy from http://
groovy.codehaus.org. Any environment that supports Java at least will do it.

For any IDE configuration, the OMS jar needs to be downloaded. It is available as a zip file, containing the oms
library (oms3-all.jar), the sources and the API documentation .

Download the OMS3 distribution file oms-3.x.zip

http://oms.javaforge.com/downloads/oms3

To use OMS, you need to add the file oms3.x-all.jar to your IDEs CLASSPATH. There are different ways to do
this depending on the development tool you are using. Please follow the IDE instructions on how to add external
libraries to a development project.

2.3. Command Line Interface (CLI)

The OMS3 command line interface allows the execution of a simulation at the command line. It is part of the
oms3-all.jar and can be easily accessed by executing the jar file itself:

$ java -jar oms-all.jar
usage: java -jar oms-all.jar [-r|-e|-d|-a|-s] <simfile>
 CLI access to simulations.
           -r   run the simfile
           -e   edit parameter in simfile
           -d   document the simfile
           -a   run the simfile analysis
           -s   create SHA digest
$ 

Note

The command line executes oms-all.jar, located in the same directory. Also, the library groovy-
all-1.6.x.jar needs to be in the same directory (download the groovy binary distribution from http://
groovy.codehaus.org, the embeddable directory contains this library) .

To run a simulation use a command such as:

$java -jar oms-all.jar -Dwork="/tmp/prms2008" -r efc.sim

It is also possible to specify the CLI class directly to account for different versions of the libraries:

$java -cp "oms-all.jar;groovy-all-1.6.5.jar" oms3.CLI -r efc.sim

By providing the -D argument to the Java command line, system properties can be set for the simulation as shown
above.

3. References
• Java Development Kit version 6 [http://java.sun.com/javase]

• Netbeans IDE [http://netbeans.org]

• Eclipse IDE [http://eclipse.org]

http://groovy.codehaus.org
http://groovy.codehaus.org
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• Groovy language specification and Development Kit [http://groovy.codehaus.org]
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Chapter 2. Developing Components
This chapter is designed as a step by step tutorial. It guides a user through the process of creating and testing
of components, their integration into more complex components (models), the data provisioning of models, and
finally their deployment into various environments.

Figure 2.1. General Component Schematic

A component representing a certain conceptual function in a simulation is the foundation for each model. A hy-
drological model for example usually needs components for (1) handling input/output, (2) representing processes
of a hydrological system such as precipitation, interception and runoff, and (3) realizing general data processing
functions such as reading climate data or parameter sets. Ideally, the key to a proper model design based on com-
ponents is a clean "separation of concerns" in a model. Modeling in OMS and most other frameworks must answer
the question: “what qualifies a part of a model to become a component?”

• A component realizes a certain and mostly one conceptual function in a model. It represents a physical process,
a management action, a data gathering step, or the presentation of results to the user interface. Such functions
need to be identified and separated from each other. Each of these will result in a component.

• An identified component can be fully described regarding its function, data requirements and data offerings.
Therefore, the specification and later implementation of a component will be done with respect to its anticipated
simulation context, but a tight dependency to this context should be avoided. Later during development, the
component will be tested standalone using a test harness to validate the design specification.

• Components that model important functions and processes that recur across models and modeling projects
should be designed for portability and re-use. Some additional investment is required to produce this design,
but payoff can be substantial. Widely used components would be similar to widely referenced science in tech-
nical papers.

• Conceptually, models and sub-models (or modules) are aggregated components, and conversely components
often are models in some form. Therefore modeling architecture is a question of granularity and depends on
the business needs of the customer. The model can be large, designed to address many business requirements
comprehensively, or it can be small, a relatively simple service deployed as part of a business application work
flow.

A model also should be architected so that new science can be incorporated through time. This is best achieved by
architecting the model to contain well documented components that can be removed and replaced with updated
science. This also is a question of granularity. Sometimes it will be necessary to replace a module, other times
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a simple component. And the design should take into account that models often should be built with a common
code base that permits contributions and updates from several modelers.

By analyzing simulation models a classification of potential components can be made.

Scientific components ... Implement methods and equations to estimate some physical phe-
nomenon. Examples would be a component estimating amount of water
evaporated from a certain land cover into, a component predicting the soil
loss due to wind erosion, etc. Such components usually apply some math-
ematical function.

Scientific utility components ... Support the analysis of models by providing statistical analysis methods
such as descriptive statistics, frequency analysis, etc. Distribution generator
components are used to provide data to scientific components.

Control components ... Are responsible for managing the execution of a model. A Runge-Kut-
ta Integration component, a Time management, or a Convergence criteria
component are examples for this.

Data Input/Output Components ... Are providing data to other components in a simulation model. Such
components could handle data transfer from databases or files to the model.
Visualization components like graphs or spreadsheets are also falling under
this category.

Components are the basic building blocks of models in OMS. Components can be simple or very complex, de-
pending on the scope and the problem domain. The Figure below shows different paths to create a component the
can be used within a OMS model.

Figure 2.2. Component Development

There are 4 identified phases of development that might not all apply in real world. It depends on the existence or
quality of the existing code, the skills of the developer, and the available tools to support and automate this process.

The first two phases (Identify and Refactor) focus on the identification and improvement of existing code, where
as the two last steps adjust the code to OMS.od/projects/oms3.prj.

1) Identify needed simulation ap-
proaches.

In this first step the simulation code should be identified.

2) Refactor existing code or proto-
type new solutions as needed.

Refactoring refers to the concept of improving the design of existing code
without changing its behavior. Refactoring addresses the fact that code is
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(usually) written without extensive reuse outside of its original scope in
mind. There are recommendations, methods and tools available to support
such a process.

3) Modularize the code. This step closely follows the previous one but aims at creation of self con-
tained modules or software units. The result the of the process is a generic
component free from hidden dependencies.

4) Annotate the code. Finally the modeler annotates the component, the final step to making it
OMS-compliant. Annotation provides the modeler, the modeling team, and
external users meta data about the component to aid in the modeling pro-
cess. Annotations also become important when the component or model is
used in customer business applications that require validation and certifi-
cation of the science.

At the end of this process you have produced a component that can be used within OMS, and other frameworks.

Note

All native components remain intact, and still can be used in their original context (if refactored right).

The next sections will introduce component development of Java components step by step. Section ??? will demon-
strate adjusting existing legacy components so that they can be used with OMS.

1. Example: Developing Components for a Monthly
Water Balance Model

Monthly water-balance models have been used as a means to examine the various components of the hydrological
cycle (for example, precipitation, evapotranspiration, and runoff). Such models have been used to estimate the
global water balance to develop climate classifications to estimate soil-moisture storage, runoff, and irrigation
demand ; and to evaluate the hydrological effects of climate change [McCabe2007].

The model, referred to as the Thornthwaite water-balance program, can be used as a research tool, an assessment
tool, and as a tool for classroom instruction.

The water-balance model (Figure 2.3, “Thornthwaite Monthly Water Balance Model Schematic”) analyses the
allocation of water among various components of the hydrological system using a monthly accounting procedure
based on the methodology originally presented by Thornthwaite [Thornthwaite1948],[Mather1978]. Inputs to the
model are mean monthly temperature (T, in degrees Celsius), monthly total precipitation (P, in millimeters), and
the latitude (in decimal degrees) of the location of interest. The latitude of the location is used for the computation
of day length, which is needed for the computation of potential evapotranspiration (PET). The model is referred
to as the Thornthwaite model. A discussion of the individual process components of the water balance can be
found in [McCabe2007]
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Figure 2.3. Thornthwaite Monthly Water Balance Model Schematic

This model may serve as an example to create an component based implementation. The processes are simple
and straightforward, however its structure and general setup is typical for many hydrological and environmental
models. The following sections will explain the component creation of based on the processes, their integration
into a full model, and finally the provisioning of data, simulation setup and output analysis.

2. Developing a PET Java Component

The very basic building block of a simulation model is a component as stated earlier. It implements usually one
purpose within a larger model. The concepts are already stated as physical processes of the model. Hence, monthly
PET computation should be implemented as a component.

Monthly PET is estimated from mean monthly temperature (T) and is defined as the water loss from a large, ho-
mogeneous, vegetation-covered area that never lacks water [Thornthwaite1948],[Mather1978] . Thus, PET repre-
sents the climatic demand for water relative to the available energy. In this water balance, PET is calculated by
using the Hamon equation [Hamon1961]:

Equation 2.1. Potential Evapotranspiration (Hamon)

where PETHamon is PET in millimeters per month, d is the number of days in a month, D is the mean monthly
hours of daylight in units of 12 hours, and Wt is a saturated water vapor density term:

Equation 2.2. Saturated Water Vapor Density

where T is the mean monthly temperature in degree Celsius [Hamon1961].

Step 1: Coding the Equation

As a first task the core equation code necessary for the computation of pet is created. The equations above are
translated into valid JAVA statements. All variables that are either required as input or provided as output are
shown in bold.
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Example 2.1. Hamon equations (code fragment)

   ...
   int[] DAYS = {
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31        // 1.
   };

   ...
   double Wt = 4.95 * Math.exp(0.062 * temp) / 100.0;         // 2.
   double D2 = (daylen / 12.0) * (daylen / 12.0);             // 3.
   double d = DAYS[month]
   double pet = 13.97 * d * D2 * Wt;                          // 4.
   ...

1. An int array holds the number of days per month, used in 3.

2. Compute Wt, the Math class provides the exp() method.

3. Compute daylen input in units of 12 hours.

4. The final pet calculation.

Note that the data type double is a 8-byte floating point data type in Java

The code above is valid Java code implementing the needed equations for Hamon, however is has to be structured
as valid JAVA source code.

Step 2: Creating the Class

A JAVA class has to be created, its content is shown below. Use a Java IDE or a text editor to create this source.
Note that the class HamonET has to be stored in a file HamonET.java within the folder thornthwaie (package
name) according to the Java language specification. Common Java IDE provide very good support for handing
those tasks.



Developing Components

9

Example 2.2. HamonET Class (HamonET.java)

 package thorthwaite;                                      // 1.

 import java.util.Calendar;                                // 2.
 import java.lang.Math;

 public class HamonET {                                    // 3.         
    
    static final int[] DAYS = {                            // 4.
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    };
    
    public double temp;                                    // 5.
    public double daylen;
    public Calendar time; 
                                     
    public double pet;

    public void compute() {                                // 6.
        if (temp <= -1.0) {
            pet = 0.0;
            return;
        }
        int month = time.get(Calendar.MONTH);              // 7.
        double Wt = 4.95 * Math.exp(0.062 * temp) / 100.;
        double D2 = (daylen / 12.0) * (daylen / 12.0);
        pet = 13.97 * DAYS[month] * D2 * Wt;
        if (pet < 0.0) {
            pet = 0.0;
        }
    }
 }

1. The package thornthwaite provides a 'name space' for this class. A name space is an arbi-
trary named container providing for related classes. An alternative name could be 'et' to hold
related evapotranspiration classes.

2. The import statements are introducing core Java utility classes into HamonET.

3. The class declaration defines the HamonET class, which has to be public.

4. The DAYS array is declared within the class as 'static final' which makes its content not
modifiable and visible for all instances of HamonET.

5. The field declaration section of the class lists the Input/Output fields. Note that time is de-
clared as a Calendar object, a class provided by the Java API.

6. The method compute encapsulated the Hamon equations. It is declared public and void,
which means no return type. There are also no arguments for this method.

7. The actual month is obtained from the time object. Note that the return value is zero-based,
which makes month usable as index for the DAYS array.

Up to this point we have created a class that is a valid Java class. This is also being referred as a POJO (Plain
old Java Object).

Step 3: Creating the OMS3 Component

Just a very little work is required, to turn the HamonET Java class into an OMS3 component. For a developer it
mainly means that the existing elements that are important for (i) data flow and (ii) code processing as developed
in the previous step have to be annotated. No other changes are required in this example. Annotations are provided
by the OMS3 core library.
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Example 2.3. Annotated Component for Execution (HamonET.java)

package thornthwaite;

import oms3.annotations.*;                                     // 1.
import java.util.Calendar;
import java.lang.Math;

 public class HamonET {
    // number of days per months
    final static int[] DAYS = {
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    };
    
    @In public double temp;                                    // 2.
    @In public double daylen;
    @In public Calendar time;

    @Out public double pet;                                    // 3.

    @Execute                                                   // 4.
    public void compute() {
         if (temp <= -1.0) {
            pet = 0.0;
            return;
        }
        int month = time.get(Calendar.MONTH);              
        double Wt = 4.95 * Math.exp(0.062 * temp) / 100.;
        double D2 = (daylen / 12.0) * (daylen / 12.0);
        pet = 13.97 * DAYS[month] * D2 * Wt;
        if (pet < 0.0) {
            pet = 0.0;
        }
    }
 }

1. Add the import statement for including all OMS3 annotations into this class. The package
oms3.annotations contains them all. Section ??? discusses them in detail.

2. Annotate the fields which serve as input to all equations in HamonET with @In. Each field
has to have its own annotation which preceded the field. Note that the field can be declared
public, however it is not required.

3. Annotate the fields which serve as output to all equations in HamonET with @Out.

4. Annotate the main computational method of this class with @Execute. As a requirement, this
method must have no arguments, must be public, and no arguments.

Now we turned the HamonET class into a OMS3 component. It is in fact still a POJO that still can be used as such
outside of the framework, as long as the OMS3 annotations are put into the CLASSPATH.

The conceptual schematic of the HamonET component shows Figure ???
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Figure 2.4. HamonET Component Schematic

The component is now fully functional in OMS3 and ready to go into a model for execution. However, OMS3
offers more annotations that enrich the component for

1. Documentation and archival,

2. Robustness improvement due to data verification, and

3. Later Traceability of simulation results.

The following adds the annotations for those aspects.

Step 4: Improving the OMS3 Component

The oms3.annotations package contains a rich set of annotations that are optional for core component execution
but should be good practice in order to provide for a well rounded set of context information. Since annotations
are being used, this context information is very much attached to the source code. Therefore, it will be always
in sync with the source.

Context information can be attached to the (i) whole component and (ii) the In/Out fields as shown below.
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Example 2.4. Complete Annotated Component (HamonET.java) package thornthwaite;

 import oms3.annotations.*;                                     
 import java.util.Calendar;
 import java.lang.Math;

 @Description                                                        // 1.
    ("Hamon Potential Evapotranspiration." +
    "Climatic demand for water relative to the available energy," +
    " after Hamon.")
 @Author
    (name= "Jo Scientist", contact= "jos@research-org.edu")
 @Keywords
    ("Hydrology, Potential Evapotranspiration")
 @Bibliography
    ("Hamon, W.R., 1961, Estimating potential evapotranspiration. " +
     "Journal of the Hydraulics Division, " +
     "Proceedings of the American Society of Civil Engineers, "
     "v.87, p.107–120.")
 @SourceInfo
    ("$HeadURL: http://svn.javaforge.com/svn/oms/branches/ +
          oms3.prj.thornthwaite/src/tw/HamonET.java $")
 @Status
    (Status.DRAFT)
 @VersionInfo
    ("$Id: HamonET.java 319 2009-08-20 17:34:32Z odavid $")
 @License
    ("http://www.gnu.org/licenses/gpl-2.0.html")

 public class HamonET {
    // number of days per months
    final static int[] DAYS = {
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    };

    @Description("Temperature")                                    // 2.
    @Unit("C")
    @In double temp;                                           
    
    @Description("Day length in hours.")
    @Range(min=9, max=15)
    @In double daylen;

    @Description("Current time")
    @In Calendar time;

    @Description("Potential ET")
    @Unit("mm/month")
    @Range(min=0.0)
    @Out public double pet;                                    

    @Execute                                                   
    public void compute() {
         if (temp <= -1.0) {
            pet = 0.0;
            return;
        }
        int month = time.get(Calendar.MONTH);              
        double Wt = 4.95 * Math.exp(0.062 * temp) / 100.;
        double D2 = (daylen / 12.0) * (daylen / 12.0);
        pet = 13.97 * DAYS[month] * D2 * Wt;
        if (pet < 0.0) {
            pet = 0.0;
        }
    }
 }1. Component annotations for documentation, source code repository references, literature ref-

erences, development status information and licensing.2. Field annotations for documentation, unit specification and range constraints.All annotations are explained in detail in Appendix ???.
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The component as shown in Step 4 is very well annotated. All code and meta information resides in one source
file. This has the great advantage that a metadata/documentation context is always directly attached to the source
code. Such an approach is always preferred. I some cases it is necessary to separate the metadata/documentation
aspect from the component source. If the component is only available in its compiled form (as POJO), no source
code is available, it can still be annotated and used as a OMS3 component.

Lets suppose we have the Java class as shown in step 2 only available as compiled .class or .jar file (executable
binary format). By creating an additional class named HamonETCompInfo.java, the compiled HamonET.class file
can be annotated too. (the CompInfo file name suffix indicates the annotation extension of the same class without
this suffix). The class HamonETCompInfo.java is referred as Annotation Component (Figure ???).

Figure 2.5. Annotation Component

The annotation component class must be an abstract Java class. It includes only the language constructs from the
component, that are relevant to the framework, such as only the In and Out fields and the tagged methods. Those
methods must be declared abstract too, hence they do have no implementation body.
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Example 2.5. Pure Annotation Component (HamoETCompInfo.java)

 package thornthwaite;

 import oms3.annotations.*;                                     
 import java.util.Calendar;
 import java.lang.Math;

 @Description                                                                    
    ("Hamon Potential Evapotranspiration." +
    "Climatic demand for water relative to the available energy, "+ 
    "after Hamon.")
 @Author
    (name= "Jo Scientist", contact= "jos@research-org.edu")
 @Keywords
    ("Hydrology, Potential Evapotranspiration")
 @Bibliography
    ("Hamon, W.R., 1961, Estimating potential evapotranspiration. " +
     "Journal of the Hydraulics Division, " +
     "Proceedings of the American Society of Civil Engineers, " +
     "v.87, p.107–120.")
 @SourceInfo
    ("$HeadURL: http://svn.javaforge.com/svn/oms/branches/" +
         oms3.prj.thornthwaite/src/tw/HamonET.java $")
 @Status
    (Status.DRAFT)
 @VersionInfo
    ("$Id: HamonET.java 319 2009-08-20 17:34:32Z odavid $")
 @License
    ("http://www.gnu.org/licenses/gpl-2.0.html")

 public abstract class HamonETCompInfo {                             // 1.

    @Description("Temperature")                                                 
    @Unit("C")
    @In double temp;                                           
    
    @Description("Day length in hours.")
    @Range(min=9, max=15)
    @In double daylen;

    @Description("Current time")
    @In Calendar time;

    @Description("Potential ET")
    @Unit("mm/month")
    @Range(min=0.0)
    @Out public double pet;                                    

    @Execute                                                   
    public abstract void compute();                                        HamonETCompInfo  // 2.

 }

1. The Annotation Component is declared abstract and its name is prefixed with CompInfo.

2. The compute method is also declared abstract, no implementation.

The Component Annotation approach has the advantage to keep the Component 100% as a POJO component with
no dependency to the framework annotations. However, it means an additional burden to the developer to keep
POJO Component and Annotation Component in sync during development.

Bibliography

[McCabe2007] McCabe, G.J., and Markstrom, S.L., 2007, A monthly water-balance model driven by a graphical
user interface: U.S. Geological Survey Open-File report 2007-1088, 6 p.
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3. A FORTRAN PET Component

Up to this point we discussed the creation of components in the Java programming language. It is possible, how-
ever, to create components that originate from languages such as C, C++, and FORTRAN, popular and widely
used native languages within the scientific community.

The concept of embedding native code is derived from JNA (Java Native Architecture), an open source library that
tremendously simplifies the use of native code by providing a transparent and easy access to Dynamically Linked
Libraries (DLL) under Windows or Shared Libraries under Linux/UNIX/MAC OS X. The term DLL refers to
those type which represent the same concept. Appendix ??? discusses all details of DLL creation, integration, and
use for the C,C++, and FORTRAN programming languages.

In general OMS3 can directly interact with DLLs on all major platforms directly without the need of creating any
glue source code between Java and a DLL.

Figure 2.6. Native HamonET Component

As an example, the HamonET component now gets implemented using the FORTRAN programming language.
Figure ??? shows the involved software units. The component accesses the the DLL (ETLib.dll), that is being
created from the FORTRAN source code hamon.f90. It should be noted that this example used the annotation
component approach, the POJO and annotation component can be combined too for native components.
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Example 2.6. FORTRAN Component (hamon.f90)

 ! File:   hamon.f90
 ! Author: od
 !
 FUNCTION potET(daylen, temp, days) BIND(C, name='hamon')        ! 1.
   REAL*8,VALUE :: daylen,temp                                   ! 2.
   INTEGER*4,VALUE :: days
   REAL*8 :: potET
   REAL*8 :: Wt,D2
   
   Wt = 4.95 * exp(0.062 * temp) / 100.0
   D2 = (daylen / 12.0) * (daylen / 12.0)
   potET = 0.55 * days * D2 * Wt
   if (potET <= 0.0) then
       potET = 0.0
   endif
   if (temp <= -1.0) then 
       potET = 0.0
   endif
   potET = potET * 25.4
 END

The FORTRAN 90 source as shown above contains some F2003 enhancements which simplify
the language interoperability, mostly C interoperability. Most compilers support those features

1. The function declaration ends with the BIND() construct, providing for easier C interoper-
ability, mostly taking care of the name underscoring inconsistencies within object files and
DLLs across compilers. It allows to define an name alias for other programs to calling this
function. In the case above, the FORTRAN function potET can be called as hamon.

2. The function parameter are declared as 'value parameter', again a F2003 extension supporting
C calling conventions.

The rest of the function is just plain FORTRAN implementation if the Hamon equations. As a next step, the file
hamon.f90 will be compiled and linked into a DLL, ETLib.dll on Windows, and libETLib.so on Linux/Unix.
The instructions for different compilers on different operations systems can be found in the Appendix ???.

Now the HamonET component gets created to use the DLL. Note that if you use a DLL, a developer still needs
to create a Java component containing the annotation meta data in order to provide execution and data flow in-
formation.
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Example 2.7. Component Binding of a DLL

 package thorthwaite;                                      

 import java.util.Calendar;                                
 import oms3.util.Libraries;                                          // 1.

 public class HamonET {           

    @DLL("ETLib")                                                     // 2.
    interface Et extends com.sun.jna.Library {                        // 3.
        Et lib = Libraries.bind(Et.class);                            // 4.

        double hamon(double daylen, double temp, int days);           // 5.
    }                                  
    
    static final int[] DAYS = {                            
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    };
    
    public double temp;                                    
    public double daylen;
    public Calendar time; 
                                     
    public double pet;

    public void compute() {        
        int month = time.get(Calendar.MONTH);                        
        pet = Et.lib.hamon(daylen, temp, DAYS[month]);                // 6.
    }
 }

1. OMS contains a support library for handling DLLs. Its a part of the util package.

2. The @DLL annotation refers to the external DLL name in its argument. It has to annotate the
interface that follows the following line.

3. The interface Et extends the JNA Library interface.

4. the Libraries.bind() call binds the DLL ETLib.dll to the interface ET_FTN. The static
variable lib will reference an an instance which is bound to the native DLL.

5. The hamon method listed here is a Java surrogate for the FORTRAN hamon method in the
DLL. A call to this method would result in calling the FORTRAN function. Note that the
name, argument types and return type have to match in order to map.

6. The call performed in compute used the lib reference within Et to pass in the actual arguments
as Java variables witch are at the receiving end arrive as FORTRAN objects.

At model runtime the it has to be ensured, that the DLL is accessible with the environment path, or a system
property jna_library_path has to be to point to the DLL's directory. See for details in Appendix ???

4. A C PET Component

The same PET component can also be implemented in C or C++, as the program listing shows below. Default C
calling conventions for function arguments and function naming are being used, Also, type names are similar to
Java and show somehow the origins of the Java programming language.
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Example 2.8. C Component (hamonc.c)

 /* 
  * File:   hamonc.c
  */
 double hamon(double daylen, double temp, int days) {
    double Wt = 4.95 * exp(0.062 * temp) / 100.;
    double D2 = (daylen / 12.0) * (daylen / 12.0);
    double potET = 0.55 * days * D2 * Wt;
    if (potET <= 0.0) {
        potET = 0.0;
    }
    if (temp <= -1.0) {
        potET = 0.0;
    }
    potET *= 25.4;
    return potET;
 }

The code above (hamonc.c) should be compiled into a DLL or shared library using a C or C++ compiler. Its use
in a OMS3 component is identical to its FORTRAN counterpart as described in the previous section. The only
change might be the DLL name as specified in the @DLL annotation.

5. Component Method Annotation

As seen in the developed example, the compute() method was annotated with @Execute annotation to point the
framework to the entry method for a component's execution. This method provides the core purpose and equations
of the Hamon class. For the framework the name of this entry method is irrelevant, as long as it has the expected
method signature. The method has to be public, void return type and no arguments, the method name does not
matter.

All together there are three types of annotations that indicate execution entry points of a component:

@Initialize Annotates a component's method that initializes the component. Some components need to
setup and handle an internal state in order to allow for their execution. Note that no input
to the component (@In) can be used during initialization. Those values are not present at
initialization time. The initialization method gets called only once on model startup. It is also
called after instantiation and before this and any other component's execute method. Examples
might be allocation of memory, opening of data base connections, file handles, or the creation
of a user interface element. This annotation is optional.

@Execute This annotation annotates the method implementing the core functionality of the component.
This method is required. Within this method usually all @In tagged fields are accessed, equa-
tions are applied and @Out fields are being assigned to results. It can be safely assumed that all
@In tagged fields contain valid values.

@Finalize Finalize is called after the last @Execute of this and any other component in the model. It
should be used to gracefully end the model run by cleaning up resources, such as closing open
file streams or data base connections, deallocation of memory if native code is involved. This
annotation is optional.1

All of the annotated methods must have the same signature: public void <name>(). Any other signature is
invalid. The methods can also declare Exceptions being thrown. A component must have at least the @Execute
annotation.

The example below shows the use of the method annotations in detail.
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Example 2.9. Unconditional Initialization

 public class ClimateInput {
    
    DBConnection db;
    Iterator<String[]> inp;
    
    @Out public double temp;
    @Out public double precip;
    @Out public boolean moreData;

    @Initialize
    public void init() throws Exception {
        db.open(System.getProperty("db.connect");
        inp = db.iterator();
    }

    @Execute
    public void exec() throws Exception {
        if (inp.hasNext()) {
            String[] row = inp.next();
            temp = Double.parseDouble(row[2]);
            precip = Double.parseDouble(row[3]);
        }
        moreData = inp.hasNext();
    }
   
    @Finalize
    public void done() {
        db.close();
    }
}

The Climate input example above used all three method annotations. A data base connection gets established
during initialization, within execute data is fetched from it row by row on each call. At the end of execution the
database connection is closed.

The connect information is provided as a static system property in this case. Since the initialization does not depend
on any state variable of the component this method is called unconditional initialization

5.1. Conditional Initialization

Another practical method for component initialization is shown in the example listing below. Unlike unconditional
initialization, the conditional initialization can take input values of the component into account. Hence, it has to
be called from within @Execute, since it needs valid @In values. The @Initialize tagging is not needed, the
@Ininit() method can be declared private, since it only called from within this component (1).
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Example 2.10. Conditional Initialization

 public class Climate {

    @In  public File climateInput;
    @Out public double temp;
    @Out public double precip;
    @Out public boolean moreData;
    @Out public Calendar time = new GregorianCalendar();
    
    /** Row Input iterator*/
    Iterator<String[]> inp;
    /** data formatter */
    private SimpleDateFormat f;

    private void init() throws Exception {         // 1.
        CSTable table = DataIO.table(climateInput, "Climate");
        f = new SimpleDateFormat(table.getColumnInfo(1).get("Format"));
        inp = table.rows().iterator();
    }

    @Execute
    public void execute() throws Exception {
        if (inp == null) {                         // 2.
            init();
        }
        if (inp.hasNext()) {
            String[] row = inp.next();
            time.setTime(f.parse(row[1]));
            temp = Double.parseDouble(row[2]);
            precip = Double.parseDouble(row[3]);
        }
        moreData = inp.hasNext();
    }
   
    @Finalize
    public void done() {
        DataIO.dispose(inp);
    }
}

This methodology provides more flexibility, because it is more dynamic within the execution. However, an check-
ing on an internal variable is usually required to indicate the need for the init() call, hence called conditional
initialization (2).

6. References
• Java Native Architecture (https://jna.dev.java.net)

• GCC (http://gcc.gnu.org)

• Intel Compiler (http://software.intel.com/en-us/intel-compilers)
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Chapter 3. Component Integration
So far, we talked about individual components, their internal structure, annotated elements such as fields and
methods, and meta data annotations for components. In this chapter we will explain the assembly of multiple
components into coarser grained components, that becomes eventually the model.

1. Component vs. Model
[tbd]

2. Compound Java Components
A Compound is an aggregate of simple components. It can be viewed as a facade for its internal components that
are usually considered simpler. Figure ??? shows the schematic of a geometry compound component, that contains
three internal components. They are connected to provide data for computing the surface area of a cylinder. They
are also connected to the compounds Input and Output. If the internals of the CylinderCompound would be omitted,
it would look like a simple component with height and radius as input and surface as output. It can certainly be
used this way in another compound.

[tbd]

2.1. Connecting Components

The connect() method allows to connect the output field of a component (tagged as @Out) with an input field
of another component (tagged with @In). Both components are internal to this compound. Their field types have
to be compatible.

 public void out2in(Object from, String c1Out, Object to, String c2In);

from - component1 c2

c1Out – output field name of component 1

to – component 2

c2In – input field name of component 2

If c1Out and c2In are the same name, a shortcut can be used:

 public void out2in(Object c1, String c1Out, Object ... c2);

c1 - component1 c2

c1Out – output field name of component 1

c2 – component 2

2.2. Input and Output mapping

The mapIn() method connects a compounds @In field with an internal component’s @In field. The mapOut()
methods works similar for @Out fields. Unlike the connect() method above, the map???() methods require both
field to have the same data flow tag. The types of those fields have to be compatible.

 public void in2in(String in, Object c2, String c2In)

in - in field of this component
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c1Out – output field name of component 1

c2 – component 2

If both input fiels do have the same name a shortcut can be used:

 public void in2in(String in, Object ... c)

in - in field of this component

c – internal components to map in to

3. Temporal Iterations
[tbd]

4. Spatial Iterations
[tbd]
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Chapter 4. Simulations
In this chapter the structure, setup, and execution of model simulations are discussed.

A simulation within OMS is defined as the application of a model (or component) with a concrete data set to
predict the actual behavior of a system or the environment. A developed model component is needed as well as a
dataset providing input data for the model. Input data can be supplied directly to the model.

The implemented simulation concept leverages the concept of Domain Specific Languages (DSL) as introduced in
the Groovy language. Introducing groovy and DSL is outside of the scope of this handbook, only the implemen-
tation for simulation building will be discussed. There is no need to master groovy beyond the described concepts.
There are some general technical requirements for developing simulations.

• In order create a new or run an existing simulation the jar file groovy-all.jar has to be in the CLASSPATH
of your IDE or other runtime environment or you just install the Groovy package (http://groovy.codehaus.net).

• The simulation file, which will be explained in detail below has to have the extension *.groovy.

At least, a simulation can be executed using the command line like:

 $ java -cp "./mycomponents.jar" sim.groovy

1. Data Input/Output format
This chapter covers data input and output handling. Although this library is a part of the OMS3 core package
structure it is neither depending on OMS3, nor OMS3 is depending on it. They just play well together. Design
motivations for this package were (i) the support of typical scientific Data IO such as tables and properties (ii)
human readability (it should not be too verbose), (iii) it has to support meta data, (iv) it should be consumable by
other tools and (v) it should allow the definition of a simple API, to programmatically read and write data.

There two type of informations that adhere to this are:

• Tables, containing tabular information

• Properties, referring to key/value property data

The Data IO format was commonly defined for both, tables and properties. The format is based on CSV structure
that has been extended with some meta tags. A file might contain any number of tables and properties.

Both types of information can be mixed in the same file and may occur multiple times. The definitions for tables
and properties are similar, both support meta data.

• The data file complies fully to the CSV standard.

• The file name extension is csd, standing for "comma separated data". It might be zipped, and would then have
the extension csz.

• A csd file might contain a table or property section, or multiple of those, or a mixture of both.

• A # symbol at the beginning of the line indicates a comment line.

• Empty lines are ignored.

1.1. Keywords

Keywords are used to indicate properties and tables in the file.
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Table 4.1. CSV Tags

 Keyword  Name Description

@T Table Defines a new table

@H Header Starts a header in a table

@S Section Starts a new property section

@P Property Starts a new property

Note

All of those keywords can be followed by optional meta data.

Note

Keywords are case insensitive (@T is equal to@t).

1.2. Meta data

Meta data may always follow the property and table markups. There is one meta data entry by line. Such an entry
may have a key/value pair (separated by a comma), or a single key with no value indicating the presence of a
meta data entry.

The property section example below, shows section level meta data supporting the whole "Parameter set" such
as data, or createdBy, as well as key value pair property meta data such as description or single value properties
such as public. It might be good practice to quote meta data values in general to account for potential commas,
however it is not required.

Table 4.2. Meta Data Examples (@S and @T)

 Name  Description Example

CreatedBy data set creation date CreatedBy, "JCarlson"

CreatedAt user who created the data set CreatedAt, "May 1st, 2008"

Description brief data set description Description, "EFC climate

file"

VersionInfo Version information (use in con-
junction with VCS)

VersionInfo, "$Id:"

SourceInfo Source information (use in conjunc-
tion with VCS)

SourceInfo, "$HeadURL:"

1.3. Properties

Properties are key/value pairs (KVP) that are aggregated in a section. There could be meta data for the whole
section @S and also for each property @P. The example below shows a property section.

Property Example:

 @S, "Parameter"
 CreatedAt, "Jan 02, 1980"
 CreatedBy, Joe

 # Single Properties 
 @P, coeff, 1.0
 description, "A coefficient"
 public

 @P, start, "02-10-1977"
 description, "start of simulation"
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A proper section starts with the @S keyword, followed be the name of the property section. It is followed by optional
meta data. Meta data keys/values can be arbitrary, and may occur at any number. A single property starts with the
property keyword @P, followed by the property name and the property value. Optional meta data may also follow
a single property. The property section ends at the beginning of the next section or table or the end of the file.

1.3.1. Property Key/Value Substitution

Properties support internal key/value substitution. This feature helps organizing property sets more efficiently, An
example is shown below. A directory property idir is defined and internally used by multiple files.

 ...
  # Input file folder (variable)
 @P, idir,                      "ccreek"
  Description, "Data directory"

 @P, ahumFileName,              "${idir}/ahum.dat"
  Description, "Absolute Humidity Data"

 @P, gwFileName,                "${idir}/hgeo.par"
  Description, "Hydrogeology Data"
 ...

The expression ${<prop_key>} will be replaced with <prop_value>, if there is somewhere else within the same
property set a property defined as @P, prop_key, prop_value.

1.4. Tables

Tables consists of columns and rows, and optional table meta data. Columns may have a type and optional meta
data. Meta data is organized as pair key, value. A table requires two key words, @T (Table) and @H (Table header).
The @T keyword tags the start of a table definition, the @H tag starts a column definition.

Tables can be generated using any text editor. Spreadsheet tools usually do allow the export into a CSV file.

Table Example:

 # table example
 @T, "Example DataSet"
 CreatedAt, 5/11/06
 CreatedBy,  JackC
 # Now, there is header information
 @H,     time,b,c
 Type,   Date,Real,Real
 Format, yyyy-MM-dd,#0000.00,#000.0000
 ,2006-05-12,0000.00,001.1000
 ,2006-05-13,0001.00,002.1000
 ,2006-05-14,0002.00,003.1000
 ,2006-05-15,0003.00,004.1000
 ,2006-05-16,0004.00,005.1000
 ,2006-05-17,0005.00,006.1000
 ,2006-05-18,0006.00,007.1000

A Table consists of three main sections:

1. The table header, indicated by @, followed by the name of the table. The next lines may have table level meta
data, one meta data entry per line. Meta data is optional.

2. The table header is followed by the column header, indicated by the @H keyword. Next to this all the column
names are listed. The next lines may contain column meta data, starting with the key, followed by the values
for each column (Example above shows Type and Format for the columns).

3. Data rows start with a ',' as the first character; values are comma separated.

A minimal table with no optional meta data looks like this:

 @T, example data table
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 @H a, b, c
 , 1,2,3
 , 4,5,6
... more data

1.5. Using the DataIO API

[TBD]

2. Concepts and Common Elements
This Section introduces the concepts and common elements of simulations in OMS.

2.1. SimBuilder

The common start and entry point for developing a simulation is the class SimBuilder. This class is part of the
OMS simulation package.

SimBuilder provides for two main features

1. The Creation of different kinds of simulations by using a very easy language structure

2. The Execution of a simulation once its built successfully.

. There are at least two parts that are common to every simulation as shown below:

A first Simulation:

 sb = new oms3.SimBuilder()                 // (1)
 sb.sim(name:"SimpleTWModel for EF") {      // (2)
    // define the model
    model(classname:"tw.Thornthwaite") {
        // add parameter
        parameter {
            climateFile  "c:/od/projects/ngmf.models/src/tw/climate.cst"
            outputFile   "output.csv"
            runoffFactor 0.5
            latitude     35.0
            smcap        200.0
        }
    }
 }

(1) Creating the Builder This statement instantiates a builder object using its class
oms3.SimBuilder; In the example above it is names sb, but this name is
just arbitrary.

(2) Creating the Simulation from
the builder

Use the SimBuilder instance to create the simulation. The example above
used the simu method to create a basic simulation (simu is explained in
detail below)

The SimBuilder class can be instantiated with the following properties:

level (java.util.logging.Level) The logging level that will be used on simulation building and be
passed on to the simulation instance. Valid logging levels are defined in
java.util.logging.Level as ALL, FINEST, FINER, FINE, CONFIG,
INFO, WARNING, SEVERE, or OFF. Setting the level to CONFIG will for ex-
ample report the building of the simulation as it performs. If not provided,
logging is set to OFF.

The following example illustrated the proper setting of those properties.

 sb = new oms3.SimBuilder("CONFIG") 
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 sim = sb.sim(name:"SimpleTWModel for EF") { 
   // define the model
   //...
 }

 sim.run()   // call run(), since no autorun!

Setting the properties above may help inspecting the simulation build process as it progresses without automatic
execution.

OMS supports different flavors of model simulations that are all constructed in a similar way from the SimBuilder
class. This allows constructing and performing basic simulations, model calibrations, forecasting methods, uncer-
tainty and sensitivity analysis, or just plain model testing in an easy and consistent way. The following types of
simulations can be created using SimBuilder.

Table 4.3. Simulation Types

 Simulation Description 

sim Basic Simulation

esp Ensemble Streamflow Prediction

luca Model calibration using the LUCA method

sce Shuffled Complex Evolution

mocom Multi-objective complex evolution procedure

glue Generalized Likelihood Uncertainty Estimation

dds Dynamic Dimensioned Search

rsens Relative Sensitivity

test Automated model testing

The following sections introduce elements that are commonly used across all simulation types, followed by the
simulations them selfs.

Common Simulation Element Structure

All simulations adhere to the same formal structure as used in the first simulation:

 // comment
  <element>(<key:value>, <key,value>, ...) {   
   <element>(<properties like above>) {
      // more sublements..
   }
   <element>(<properties like above>) {
      // more sublements or just elements with value
      <element> <value>
   }
   <element>(<properties like above>) 
   <element> {
      <element ..
   }
   // more subelements
 }

• There is one root element that is usually the simulation.

• Elements might have properties, provided in parenthesis after the element name. If there are no properties the
parenthesis can be omitted.

• Properties are a list of comma separated tuple of <key:value> pairs.

• Elements might have sub elements within curly brackets. If there are no sub elements, the curly brackets can
be omitted.
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• Elements can have just a value following the element name separated by space .

• Comments can be single lined ('// ...') or can span multiple lines ("/* ... */") such as in C++, Java, or
Groovy.

2.2. Model (model)

The model element is a part of every simulation and describes a model/component to be used. It is really top
component class that is represented here. The component can be any Class that has at least the @Execute annotation
indicating the execution entry point.

The example below defines a model by using the class "tw.Thornthwaite".

 model(classname:"tw.Thornthwaite") {
     // optional parameter definitions
 }

The model might have optional parameter subelements. If no parameter should be defined, the subelement body
can be omitted:

 model(classname:"tw.Thornthwaite")

Specification

Name model - specifies a model for a simulation

Properties  Name  Description Type Required

classname the classname of the
model.

String Y

Note

The classpath of the simulation should include all required classes for the model.

Subelements  Name  Description Type Default Occurrences 1)

parameter the model param-
eter set

- - *

Parent(s) all simulation types

Notes • 1) Occurrences: 1 - exact one time; + - one or more time; ? - zero or one time; * - zero or
more time

• The class as specified in classname and every other class has to be found in the classpath of
a simulation. Setting the classpath can be done using command line arguments on simulation
execution, using environment variables, or other methods.

2.2.1. Parameter (parameter)

The model parameter element allows the specification of input values for a model. It can reference a external file
(csd) that contains the model parameter as specified in Section ???. This element also allows the direct specification
of parameter as sub-element. An example:

 model(classname:"tw.Thornthwaite") {
    // parameter
    parameter(file:"params.csd") {
        climateFile  "c:/od/projects/ngmf.models/src/tw/climate.cst"
        outputFile   "output.csv"
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        runoffFactor 0.5
        latitude     35.0
        smcap        200.0
    }
 }

the parameter 'file' property takes a file name. Note that this file can be an absolute file path or a relative one,
that will relate to the base directory of the simulation. The parameter element can also have the parameter names/
values as sub-elements as shown above. Names are matching the @In tagged fields of the model that is named
in the surrounding model element. Values are space separated from their keys and have valid Java/Groovy data
types such as Strings, Numbers, Files, etc. Those data types have to match the data type of the corresponding
@In field in the model. However, the system will convert the values into the proper field data type, if the value is
provided as String. (The climateFile value in the example above is of type File, but for convenience purposes
it is provided as String.

If both, the file property is provided and there are also parameter values given, and both the file and the subsection
specifies the same parameter, then the sub element will overwrite the file specified parameter.

The following use of the parameter element is possible. Multiple parameter elements can help splitting parameter
sets in groups and allow for redefinition.

 model(classname:"my.model") {
    // parameter defintion
    parameter(file:"params.csv")          // parameterfile only
    parameter(file:"params-dates.csv")    // parameterfile only
    parameter(file:"params-files.csv") {  // parameterfile and explicit
        testdir "/tmp/test"
    }
    parameter {                           // only explicit parameter
        coeff 2.34
    }
 }

More general about parameter value reading and setting order: A parameter at a higher line number will overwrite
the same one at a lower line number. It is not relevant if it comes from a file or is specified explicitly.

Specification

Name parameter - describes a model parameter

Properties  Name  Description Type Required

file the parameter file String (csd - file) N

Sub elements  Name  Description Type Default Occurrences

<pname> <pval-

ue>

single model pa-
rameter

<component
field type>

- *

Parent(s) model

Notes • A parameter element must have either a file property or at least one single parameter sub-
element or both, but cannot have non of both.

2.2.2. Resources (resource)

Every simulation has to manage resources such as a model executable, DLLs, parameter files, climate data input,
documentation, etc. The resource element allows the listing of those resources. There are several uses for the
resource listings in a simulation.

• All jar files listed in a resource element are added to the classpath for JAVA model execution. Jar files can
be referenced as local files or URLs, if the model should be loaded from a remote location. If no Jar files are
present, the model will use the default class path for the application.
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• All files regardless of which type are used for digest computation to ensure comprehensive hashing of all sim-
ulation resources.

• Other tools for remote execution within a cluster can use the resource listing to copy thiose files to other ma-
chines.

A resource section of a simulation might look like:

work = "home/prj"
sim(name:"ceap") {
    //
    resource "$work/dist/oms3.prj.ceap.jar"
    resource "$work/dist/oms3.prj.ceap-lib.jar"
    resource "$work/input/climate.csv"
} 

The resource values always follow the resource keyword. It also shows the use of string replacement in order to
reference a common root directory. Alternatively the files above can be provided as a list to one resource element.
(Note the required brackets and parenthesis). Both notations do have the same semantics.

 ...
 resource (["$work/dist/oms3.prj.ceap.jar",
             "$work/dist/oms3.prj.ceap-lib.jar",
             "$work/input/climate.csv"])
 ...

Specification

Name resource - list all relevant simulation resource files

Value   Description Type Required

<single file> a file belonging to this
simulation

String (file or URL) y

<file list> all file belonging to this
simulation

List of Strings (file or
URL)

y

Parent(s) sim, model

Notes • A resource element must have either have a single file value or a list of files.

• The resource element should at least list all .jar, .exe, .dll files that are needed for execu-
tion.

• Listed files should provide the full path.

• The resource element of a sim element and a model element are shared.

2.2.3. Logging (logging)

The logging sub-element is an optional part of a model element. It controls the logging levels for single components
or for the whole model. In order to use the logging feature, components have to obtain and use a logger accordingly.

A logger is an object that allows output handling based on logging levels. Such levels usually indicate the severe-
ness of a message. The Java logging infrastructure supports per default 7 log levels, ranging from FINEST (the low-
est priority or importance) to SEVERE (the highest importance). In addition there is a level OFF to turn off logging at
all. If a log level is provided, all log message of the same or higher priority are passed to the system and printed out.

The examples below shows the use of the logging. The logging element is part of the model element. It lists the
component class names and their associated log levels for a simulation run.

 model(classname:"my.model") {
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    // logging definition
    logging {                           
        "StreamFlow" "INFO"
        "GwFlow"     "CONFIG"
    }
 }

The component StreamFlow in 'my.model' is assigned the Log level INFO, the GwFlow component will have a finer
grained CONFIG log level. The default log level for all other components in the model is WARNING.

 model(classname:"my.model") {
    logging (all:"INFO"){                           
        "StreamFlow" "FINEST"
    }
 }

Now the default log level for all model components is set to INFO, StreamFlow has the most verbose log level.

 model(classname:"my.model") {
    logging (all:"OFF")                          
 }

The logging element above turns off all logging for the whole model. In such a configuration, even severe problems
within components are not reported. This statement should be used with care.

Specification

Name logging - assigns log levels to components

Properties  Name  Description Value Required

all The base log level for
all components in the
model.

'OFF', 'SEVERE',

'WARNING', 'IN-

FO', 'CONFIG',

'FINE', 'FINER',

'FINEST'

N (default: WARNING)

Sub-elements  Name  Description Type Default Occurrences

<comp name>

<log level>

single compo-
nent log level

<String>

['OFF', 'SE-

VERE', 'WARN-

ING', 'IN-

FO', 'CONFIG',

'FINE', 'FIN-

ER', 'FINEST']

- *

Parent(s) model

Notes • If there is no logging element with a model element, all components will default to the
WARNING level.

2.2.3.1. Setting up logging in a component

To use the logging features within a simulation as described in the previous section, the component has to be setup
properly. It has to obtain and use a logger object:

Usually, the logger object is obtained as a static reference somewhere in the declaration part of a component:

 import java.util.logging.*;                 // 1.
 ...
 public class Ddsolrad {
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 static final Logger log = 
    Logger.getLogger("oms3.model." + Ddsolrad.class.getSimpleName()); //2.
 ...

  @Execute
  public void exec() {
    ...

     if (log.isLoggable(Level.INFO)) {           // 3.
         log.info("Solrad " + basin_potsw);      // 4.
     }    
  }
 ...
}

1. Import the logging classes from the java.util package.

2. Obtain the logger using the Logger.getLogger() call. Declare this reference static to share it across all
instances of this class and final to make it a constant. The argument must start with the String "oms3.model."
and must to end with the component's simple class name. Use getClassName() as shown above to obtain this
name from the class, instead if manually adding this to the logger name String. Refactoring tools will respect
this and will change the logger name properly if needed.

3. At any location within the component methods the logger can be used. As shown above, 'guarded logging' is
recommended. It is a pattern that checks to see if a log statement will result in output before it is executed. This
will reduce the memory fragmentation and garbage collection by avoiding the creation of unnecessary strings
if log levels are disabled. The statement here checks if logging is enabled at the INFO level and above.

4. The statement issues the logging message at the 'INFO' level. Use the methods servere(), warning(), info(),
config(), fine(), finer(), and finest() accordingly.

The use of Logging in component provides great flexibility for diagnostics and messaging, that is efficient and
configurable from within a simulation.

2.3. Simulation Output Strategy (outputstrategy)

A simulation usually produces output files such as times series predicted runoff, sediment yield, etc. The output-
strategy element of a simulation manages the storage of the output based on different strategies. However it
does not manage the files or the values them self. It provides for a consistent method and strategy dealing with
subsequent simulations.

An example simulation might use a output element:

 sb = new oms3.SimBuilder()             
 sb.sim(name:"SimpleModel") {      
    
    outputstrategy(dir:"c:/tmp/out", scheme:NUMBERED)

    // define the model
    model(classname:"tw.Thornthwaite") {
        // add parameter
        parameter {
            climateFile  "c:/od/projects/ngmf.models/src/tw/climate.cst"
        }
    }
 }

The types of supported output strategy schemes are:

SIMPLE The simulation creates a folder to hold the model output files. Each new simulation run will over-
write existing files with the same name. The simulation output folder is always:

<output dir> + <sim name>
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For the example above the output would always go into "c:/tmp/out/SimpleModel"

NUM-
BERED

The simulation creates a new folder for each simulation run. A new simulation will not overwrite
the output from the previous one. The last simulation always has the highest number folder. The
simulation output folder is:

<output dir> + <sim name> + <simulation run number>

For the example above the output of the 5th run would go into "c:/tmp/out/SimpleModel/0005"

TIME The simulation creates a new folder for each simulation run. A new simulation will not overwrite
the output from the previous one. The last simulation output is always in the folder named with the
simulation start time. The simulation output folder is:

<output dir> + <sim name> + <simulation start time>

For the example above the output a run would go into "c:/tmp/out/
SimpleModel/2009-04-05T12:04"

In the future there might be more strategies for output handling.

Specification

Name output - describes simulation output management

Properties  Name  Description Type Required

dir the output base dir,
must exist.

String N (default:
java.tmp.dir)

strategy the output strategy to
be used for this simu-
lation

'SIMPLE' | 'NUM-

BERED' | 'TIME'

N (default: SIMPLE)

Parent(s) simu

Notes • If there is no output specified in sim, the defaults for both, dir and strategy apply.

• The output strategies are defined in oms3.SimConstants

• Output strategy cannot be combined.

2.4. Model Efficiencies (efficiency)

Model efficiencies are commonly used to quantify the prediction performance of a simulation model by computing
some aggregate based on observed and simulated values of the same model property.

Several model efficiencies are available, see table below.

Table 4.4. Efficiencies

 Name (KEY) Description Equation

ABSDIF Absolute difference

LOGABSDIF Log of the absolute difference

NS Nash-Sutcliffe
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 Name (KEY) Description Equation

LOGNS Log of Nash-Sutcliffe

LOGNS2 Log of Nash-Sutcliffe (Pow 2)

IOA Index of Agreement

IOA2 Index of Agreement (Pow 2)

R2 Goodness of fit

GRAD Linear Regression Gradient

WR2 Weighted Correlation Coefficient

DSGRAD Double Sum Analysis Gradient [TBD]

AVE Absolute Volume Error

RMSE Root Mean Square Error

PBIAS Percent BIAS

PMCC Pearson product-moment correla-
tion coefficient

TRMSE Transformed Root Mean Square Er-
ror  ,

ROCE Runoff Coefficient Error

The simulation below shows the use of the efficiency element in a simulation. Multiple efficiencies can be com-
puted at once. Just combine those by using the '+' operator as shown.

 sim(name:"Efcarson") {
    // define the model
    model(classname:"model.PrmsDdJh") {
        // ... parameter here
    }
    efficiency(obs:"runoff[0]", sim:"basin_cfs", methods:NS+NS2+ABSDIF+TRMSE)
 }
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Executing the simulation will produce additional table output for the requested efficiencies:

 Efficiencies           ns1        ns2     absdif      trmse 
runoff/basin_cfs    0.66512    0.82971  764.30044    2.44043 

Specification

Name efficiency - model efficiency computation

Properties  Name  Description Type Required

obs a output field that pro-
vides observed values

String Y

sim a output field that pro-
vides simulated values

String Y

precip precipitation values String Y (only for ROCE, ig-
nored otherwise)

method efficiency method(s)
to compute

KEYs (can be com-
bined)

Y

file the output file String N (if missing output
goes to the console,
otherwise to the speci-
fied file located in the
output folder.)

Parent(s) sim

Notes • Multiple keys can be combined using the + operator, the output will be a combined table.

• Multiple efficiencies can use the same file for output. They get appended.

2.5. Summary Output (summary)

The summary element provides ad-hoc statistics for selected model (state) variables. This element is a part of a
simulation. Statistical moments are computed over an aggregation period that can be selected. The period can be
daily, weekly, monthly, yearly, or the entire simulation. A summary is always specified for one variable at a time.
That variable must be output of one component in the model.

The examples below shows the use of the summary element within the 'SimpleModel' simulation.

 sim(name:"SimpleModel") {      
    
    // define the model
    model(classname:"tw.Thornthwaite") {
        ...
    }
    summary(time:"time", var:"basin_ro", statistics:MAX, file:stats.txt)
 }

The maximum value of the output variable basin_ro gets computed over the total simulation period, and the output
will be stored in the file stats.txt, located in the simulation run output folder.

 sim(name:"SimpleModel") {      
    
    // define the model
    model(classname:"tw.Thornthwaite") {
        ...
    }
    summary(time:"time", var:"runoff[4]", statistics:MEAN+MIN+LAG1, period:YEARLY)
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 }

The runoff array element #4 will be aggregated over one year and its minimum, mean and autocorrelation will
be printed to the console.

Table 4.5. Statistical Moments

 Moment Description 

MEAN

MAX

MIN

COUNT

RANGE

MEDIAN

STDDEV

VAR

MEANDEV

SUM

PROD

Q1 First Quartile [Tbd]

Q2 Second Quartile (MEDIAN) [TBD]

Q3 Third Quartile [TBD]

LAG1 LAG-1 autocorrelation [TBD]

Specification

Name summary  - ad-hoc summary statistics

Properties  Name  Description Type Required

time the time field to be
used to compute the
aggregation period

String Y

var a output field that pro-
vides the values

String Y

statistics Statistical moment(s)
to compute

Statistical Moments
KEY

Y

period aggregation period 'DAILY' | 'WEEKLY' |
'MONTHLY' | 'YEARLY' |
'TOTAL'

N (defaults to 'TOTAL')

file the output file String N (if missing output
goes to the console,
otherwise to the speci-
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 Name  Description Type Required

fied file located in the
output folder.)

Parent(s) sim

Notes • Multiple keys for statistics can be combined using the + operator, the output will be a combined
table.

• Multiple statistics can use the same file for output. They get appended.

• Aggregation periods cannot be combined.

• Variable names may refer to scalars or array elements using the Java style (e.g. 2D array
element: ro[1][0])

2.6. Dynamic Output (output)

Optional to a simulation, the output element can be used to capture and store output field values in an CSV output
file. This is an alternative to a component-based solution, where the a dedicated output component is a integrated
part of the model. Both approaches do have pro and cons.

Model output component Pros - Can write to any data store; essential model feature, hight perfor-
mance

Cons - No ad-hoc change of output variables, change needs model recom-
pilation.

Simulation output element Pros - Output variables can be changed or disabled altogether without mod-
el recompilation, very flexible. Well suited for component output ad-hoc
inspection

Cons - Slower in performance that dedicated output component. Only CSV
data file output supported for the output element

Note that both types of output definition can co-exist in one simulation.

The examples below show the use of the output element within a simulation.

 sim(name:"Efcarson") {
    // ...Efficiencies
    model(classname:"prms2008.PrmsDdJh") {
       // ...
    }
   output(time:"date", vars:"basin_gwflow_cfs,basin_cfs,runoff[0]", 
           fformat="7.3f", file:"out1.csv")
   // ... 
}

The output is driven by date, an out field in the model. The variables to be captured in an output file called
'out1.csv' are listed in vars. Note that an array element runoff[0] is a part of this. The numerical output format
for floating point variables is "7.3f" (7 digits total, 3 decimal rounding). The output file gets stored to the output
folder as defined in outputstrategy. For the configuration above it will have the following content:

 @T, "Efcarson"
  Created, "Tue Sep 15 14:31:36 MDT 2009"
 @H, date, basin_gwflow_cfs, basin_cfs, runoff[0]
  Type, Date, Double, Double, Double
 ,1980-10-01 12:00:00,    116.453,    116.453,     84.000
 ,1980-10-02 12:00:00,    114.974,    117.640,     82.000
 ,1980-10-03 12:00:00,    113.514,    113.514,     80.000
 ,1980-10-04 12:00:00,    112.072,    112.072,     80.000
 ,1980-10-05 12:00:00,    110.649,    110.649,     80.000
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 ...

Note: The name of the simulation will be used as table name (EFcarson).

Specification

Name output - simulation defined output

Properties  Name  Description Type Required

time the time field to be
used to trigger output
on a time change.

String Y

vars a list of output fields
that provides the val-
ues on each time step

String, (field names
separated by ',', ';', or ':'

Y (at least one field
name)

fformat format for floating
point values

String N (default '10.3')

dformat format for integer val-
ues

String N (default '10')

file the output file String N (if missing output
goes to the console,
otherwise to the speci-
fied file located in the
output folder.)

Parent(s) sim

Notes • If multiple output elements are used, each should have its own unique file name. It is also
recommended to use a file for output when specifying multiple outputs in a simulation.

2.7. Analysis (analysis)

An analysis elements provides for post run analysis by means of plotting/graphing features. It is an optional part
of a simulation. Performing an analysis will usually result in graphs. The following basic types of analysis plots
are available

• Time series plots

• Flow duration plots

• Scatter plots

In addition for Ensemble Streamflow Prediction:

• Esp trace analysis plots

An analysis can contain any number of those plots as sub-elements as shown below.

sim(name:"Efcarson") {
  ... 
  analysis(title:"Simulation Output") {
       tsplot(title:"East Fork Carson") {
            x(file:"%last/out1.csv", column:"date")
            y(file:"%last/out1.csv", column:"basin_cfs")
            y(file:"%last/out1.csv", column:"runoff[0]")
        }
        tsplot(title:"Error") {
            x(file:"%last/out1.csv",  column:"date")
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            expr(eq:"sim - obs") {    
                sim(file:"%last/out1.csv", column:"basin_cfs")
                obs(file:"%last/out1.csv", column:"runoff[0]")
            }
            expr(eq:"sim - obs", acc:true) {
                sim(file:"%last/out1.csv", column:"basin_cfs")
                obs(file:"%last/out1.csv", column:"runoff[0]")
            }
        }
        flowduration {
            y(file:"%last/out1.csv", column:"basin_cfs")
            y(file:"%last/out1.csv", column:"runoff[0]")
        }
        scatterplot {
            x(file:"%last/out1.csv", column:"basin_cfs")
            y(file:"%last/out1.csv", column:"runoff[0]")
        }
    }
    ...
 }

The configuration as shown above will result in output graphs as showed in Figure ???. The whole analysis will
appear as a separate window, each plot will have its own tab and graph. The Figure ??? actually shows the same
window with different tab being activated.

Figure 4.1. Example Analysis

There are some general rules for referencing data sets that apply to all analysis types as described in the following
sub-sections.

2.7.1. Referencing data sets

All plots are referencing data sets that are stored as CSV tabular data. To identify a column a (i) file name, (ii) table
name, and (iii) column name have to be provided. However, the analysis can handle some shortcuts in context of
the simulation. There are some examples:
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 x(file:"c:/tmp/SIM/0003/out1.csv", table"efc", column:"runoff")

A column is referenced fully by its file, table, and column name. The file name is absolute.

 x(file:"c:/tmp/SIM/%last/out1.csv", table"efc", column:"runoff")

A column is referenced fully by its file, table, and column name. The file name is absolute but references the last
simulation run. The meaning of 'last' depends on the chosen output strategy.

 x(file:"%last/out1.csv", table"efc", column:"runoff")

Now the file reference is in context to the simulation. It points to a file in the last output folder for this simulation.

 x(file:"%last/out1.csv", column:"runoff")

If the table name is not provided, the name of the simulation is assumed. The last variant is preferred, since it
provides the most flexibility for referencing data path independent.

OMS3 defines 3 'variables' to refer to s simulation run context. They can be used in a file value as shown above.
Note, that for a SIMPLE output strategy, they all refer to the same output folder.

%first The first simulation output in this run sequence. (For numbered outputs is the folder with the
lowest number, for timed output the oldest simulation time)

%previous The previous previous simulation output in this run sequence. (For numbered output this is the
folder with the highest number - 1, for timed output the second recent simulation time)

%last The last simulation output in this sequence (For numbered output this is the folder with the highest
number, for timed output the most recent simulation time)

Using those variables has several benefits. A analysis configuration needs to created once and can always reference
the most recent output of a simulation after each run (use %last). I addition, someone can always compare the
last run's output with the previous output and analyse the effect of model parameter changes. In another scenario
a modeller might want to compare the last run's output against a baseline data set, that is being referenced with a
full qualified absolute path name. Again, not analysis file needs to be adjusted after each run. %first, %previous,
and %last are supporting therefore the modeller's work flow.

Specification

Name axis (x,y, ...) - column reference

Properties  Name  Description Type Required

file CSV file name String y

table table name. String n (default simulation
name)

column column name. String y

Parent(s) timeseries, flowduration, scatter

Notes • The y axis must be referencing a column with numerical values.

• Columns can have different number of rows.

2.7.2. Time Series

A simple time series plot can be configured using the timeseries element within an analysis. It takes one x sub
element referring to the time series column and a variable number of y elements for the data graphs.

 analysis { 
  timeseries(title:"East Fork Carson") {
      x(file:"%last/out1.csv", column:"date")



Simulations

41

      y(file:"%last/out1.csv", column:"basin_cfs")
      y(file:"%last/out2.csv", column:"runoff[0]")
   }
   ...
 }

The example above defines the x axis as the date column of the last run that produces out1.csv. The two y data sets
(basin_cfs, and runoff[0]) are obtained from different files. The visual output might look like the screen shot below.

Specification

Name timeseries - time series chart

Properties  Name  Description Type Required

title chart title. String N

Sub elements  Name  Description Type Default Occurrences

x x axis, indepen-
dent var

Date column 1

y y axis value column +

Parent(s) analysis

Notes • The x axis must be referencing a column with dates.

• All columns must have the same number of rows.

2.7.3. Flow Duration

Flow duration is a plot showing the percentage of time that stream flow is likely to equal or exceed some specified
value of interest. It can be used to show the percentage of time river flow can be expected to exceed a design flow
of some specified value, or to show the discharge of the stream that occurs or is exceeded some percent of the time.
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Within an analysis, the flowduration element allows the creation of such graphs. It takes y axis elements as sub
elements from which the flow duration gets computed.

 analysis { 
   flowduration {
       y(file:"%last/out1.csv", column:"basin_cfs")
       y(file:"%last/out1.csv", column:"runoff[0]")    
   }
   ...
 }

This example defines the flow duration with two graphs. The visual output is shown below.

A flow duration curve is a plot of discharge vs. % of time that a particular discharge was equaled or exceeded.
The area under the flow duration curve (with arithmetic scales) gives the average daily flow, and the median daily
flow is the 50% value.

Specification

Name flowduration - flow duration chart

Properties  Name  Description Type Required

title chart title. String N

Sub elements  Name  Description Type Default Occurrences

y y axis value column +

Parent(s) analysis

Notes • The y axis must be referencing a column with numerical values.

• Columns can have different number of rows.
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2.7.4. Scatter

Scatter plots show the relationship between two variables by displaying data points on a two-dimensional graph.
They are useful in the early stages of analysis when exploring data before actually calculating a correlation coeffi-
cient or fitting a regression curve. For example, a scatter plot can help one to determine whether a linear regression
model is appropriate.

The scatter element of an analysis provides for an easy creation of a scatter plot:

 analysis { 
   scatter {
     x(file:"%last/out1.csv", column:"basin_cfs")
     y(file:"%last/out1.csv", column:"runoff[0]")
   }
   ...
 }

Provide x and y axis information accordingly. The setup above indicates the correlation of a simulated and observed
property such as runoff

Name scatter - scatter plot

Properties  Name  Description Type Required

title chart title. String N

Sub elements  Name  Description Type Default Occurrences

x x axis variable value column 1

y y axis variable value column 1

Parent(s) analysis

Notes • The x and y axis must be referencing a column with numerical values.

• Columns must have the same number of rows.
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2.7.5. Computed Ad-hoc graphs

The previous examples are fully based on column data obtained from data files. However sometimes an derived
data set should be used instead on an ad-hoc base, for example to plot the sum of the difference of two data sets
without creating computing this value in the model or manipulate the date sets with other tools. Another example
would be the ad-hoc creation of mass balance term.

The calc element was introduced to support the creation of arbitrary derived data sets for all analysis types above.
It allows the specification of an user defined equation, that operates on all elements of data columns. An example:

 analysis { 
    timeseries(title:"Error") {
      x(file:"%last/out1.csv",  column:"date")
      calc(eq:"sim - obs") {
          sim(file:"%last/out1.csv", column:"basin_cfs")
          obs(file:"%last/out1.csv", column:"runoff[0]")
      }
   ...
 }

The calc element in the example above is used as y axis. It has two major parts that relate to each other. First, the
eq attribute takes a user defined term as string argument, in this case: "sim - obs". The names are user defined,
and they have to match the names that are used for column data that is enclosed in the calc element. "sim(...),
and 'obs(...)' are two definitions of data columns with arbitrary names. As a rule: Any name being used in eq
should occur as element within calc. Any complex term can be created in eq and calc can contain an arbitrary
number of column references. As a result, the timeseries plot will have the element-wise diff of basin_cfs and
runoff shown as y axis.

The graph above shows two calculated data sets. The second definition accumulates the calculated value of an
element over the data set. The accu flag is set to true.

 analysis { 
     timeseries(title:"Error") {
            x(file:"%last/out1.csv",  column:"date")
            calc(eq:"sim - obs") {
                sim(file:"%last/out1.csv", column:"basin_cfs")
                obs(file:"%last/out1.csv", column:"runoff[0]")
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            }
            calc(eq:"sim - obs", acc:true) {
                sim(file:"%last/out1.csv", column:"basin_cfs")
                obs(file:"%last/out1.csv", column:"runoff[0]")
            }
     }
 }

Specification

Name calc - calculate data sets ad-hoc

Properties  Name  Description Type Required

title chart title. String n

eq the equation String y

Sub elements  Name  Description Type Default Occurrences

<name> data set variable value column +

Parent(s) timeseries, scatter, flowduration

Notes • The sub elements must be referencing a column with numerical values.

• Columns must have the same number of rows.

• names for sub elements must be unique.

3. Basic Simulation (sim)
A standard simulation is the basic method to setup and run a model. It is being created using the sim element of
the SimBuilder class. Define the package name and list imported packages as shown below first. The package
oms3 contains SimBuilder and needs to be imported at a minimum (1).

 sim(name:"SimpleTWModel for EF") {
    // define the model
    model(classname:"tw.Thornthwaite") {
        // add parameter
        parameter {
            climateFile  "c:/od/projects/ngmf.models/src/tw/climate.cst"
            outputFile   "output.csv"
            runoffFactor 0.5
            latitude     35.0
            smcap        200.0
        }
    }
 }

Line (2) creates the SimBuilder object that is being used in (3) to construct the simulation type. (Other simulations
as described in the following sections are using different names here. The sim object has the property name to
identify it and its purpose. In general properties are key/value pairs, separated by colons. Multiple properties are
separated by comma, all properties are embedded in parenthesis following the model.

Specification

Name sim - defines a basic simulation.

Properties  Name  Description Type Required

name the name of the simu-
lation

String Y
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Sub elements  Name  Description Type Default Occurrences 1)

model the model to exe-
cute

n/a 1

outputstrate-

gy

output manage-
ment

n/a StandardOut-

put

?

efficiency model efficien-
cies to be
computed during
simulation

n/a *

summary statistics summa-
ry to be comput-
ed during simula-
tion

n/a *

resource simulation re-
source definition

n/a *

analysis post run analysis n/a 1

Notes [TBD]

4. Ensemble Streamflow Prediction (esp)
ESP is a simulation type for Ensemble Streamflow Prediction. It implements is a modified version of the National
Weather Service’s ESP procedure (Day, 1985). ESP uses historic or synthesized meteorological data as an ana-
logue for the future. These time series are used as model input to simulate future conditions.

The typical application of ESP is streamflow forecasting . The initial hydrological conditions of a watershed, for
the start of a forecast period, are assumed to be those simulated by the model for that point in time. Typically,
multiple hydrographs are simulated from this point in time forward, one for each year of available historic data.
For each simulated hydrograph, the model is re-initialized using the watershed conditions at the starting point
of the forecast period. The forecast period can vary from a few days to an entire year. A frequency analysis is
then performed on the peaks and/or volumes of the simulated hydrograph traces to evaluate their probabilities
of exceedance.

Initialization Period Provide a start and end time for ESP initialization. This is period over which the
model will be run prior to the forecast period. It should be long enough to run
the model through one or more wetting and drying cycles.

Forecasting Period Provide the end date for your forecasting period. (Note: The start date for the
forecasting period follows the end date of the initialization period.)

Historical Years Provide the historical years to be used for forecasting traces.

Model parameter files Provide all the parameter files for the model. One of those files must have the
ESP property set and content as described in the next section.

 esp(name:"EFCarson") {

    // define output strategy: output base dir and
    // the strategy NUMBERED|SIMPLE|DATE
    outputstrategy(dir: "$work/output", scheme:NUMBERED)

    // for class loading: model location
    resource "$work/dist/*.jar"

    // define model
    model(classname:"model.PrmsDdJh") {
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        // parameter
        parameter (file:"$work/data/efcarson/params.csv") {
            inputFile  "$work/data/efcarson/data.csv"
            outFile    "out.csv"
            sumFile    "basinsum.csv"
            out        "summary.txt"

            startTime "1983-10-01"
            endTime   "1984-09-30"
        }
    }
 
    // number of forecast days
    forecast_days 15
 
    // historical years for to be used for traces
    // years are inclusive
    first_year 1981
    last_year  1983
}

Specification

Name esp - defines a Ensemble Streamflow Prediction (ESP) simulation.

Properties  Name  Description Type Required

name the name of the simu-
lation

String Y

Sub elements  Name  Description Type Default Occurrences

model the model to exe-
cute

- 1

outputstrate-

gy

output manage-
ment

- StandardOut-

put

?

resource simulation re-
source definition

- *

forecast_days number of fore-
cast days

int - 1 (if
forecast_days
not provided)

forecast_end forecasting end
date

ISO Date String 1 (if
forecast_days
not provided)

first_year first historical
year

int - 1

last_year last historical
year

int - 1

Notes • Either the forcast_days or forecast_end has to be provided, if both are missing or both are
provided an error message will be given and the simulation stops.

[TBD]

4.1. ESP Trace Analysis

The ESP procedure uses historical meteorological data to represent future meteorological data. Alternative as-
sumptions about future meteorological conditions can be made with the use of synthesized meteorological data.
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A few options are available in applying the frequency analysis. One option assumes that all years in the historic
database have an equally likely probability of occurrence. This give equal weight to all years. Years associated
with El Nino, La Nina, ENSO neutral, Pacific Decadal Oscillation (PDO) less than -0.5, PDO greater than 0.5,
and PDO neutral have also been identified in the ESP procedure, and the years in these groups can be extracted
separately for analysis. Alternative schemes for weighting user-defined periods, based on user assumptions or a
priori information, are also being investigated.

[TBD] ...

Figure 4.2. ESP trace analysis

The trace analysis is a part if the analysis element, and is simple to configure.

 esp(name:"Yampa") {

   ...
   analysis(title:"Trace analysis") {

        
        // relative path name, last output
        esptraces(title:"yampa", dir:"%last", var:"basin_cfs")
    }
   
}

Name esptraces - analysis an ensemble run.

Properties  Name  Description Type Required

title the title of the graph String n

dir the esp output directo-
ry, containing all the
trace outputs and the
file 'result.csv'.

String y

var the variable to trace String y
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Notes • ..

4.2. References

Day, G.N., Extended streamflow forecasting using NWSRFS: J. Water Resour. Plan. and Manag. Am. Soc. Civ.
Eng., 111, 157, 1985.

5. Luca Calibration (luca)
Luca (Let us calibrate) is a multiple-objective, stepwise, automated procedure for model calibration. The calibra-
tion procedure uses the Shuffled Complex Evolution global search algorithm to calibrate any OMS3 model. Luca
defines a OMS simulation type for building and performing a procedure to calibrate parameters for a (hydrologi-
cal) model. It integrates the following components:

• Multiple-objective, step-wise calibration

• Shuffled Complex Evolution (SCE), a global-search parameter optimization; and

• OMS model interoperability.

5.1. Shuffled Complex Evolution (SCE)

The purpose of Shuffled Complex Evolution (SCE) is to calibrate model parameters so that the model, which
requires those parameters, gives better results. SCE consists of the following steps:

1. Generating points. The set of parameters to be calibrated is considered as a point in N dimension space where
N is the number of parameters. SCE generates many points, in which each parameter has a random value within
its lower and upper bound values.

2. Assigning criterion values. The model is run with every point (a set of parameters) generated in SCE Step 1
as an input. An objective function that determines how close the simulation results are to observed values is
used to calculate a criterion value for each point.

3. Creating complexes. The points are divided into smaller groups called complexes such that points of good and
bad criterion values are equally distributed.

4. Complex evolution. Each complex is evolved in the following way: Several points are selected from the com-
plex to construct a sub-complex. In the sub-complex, a new point is generated, and a point that has a bad crite-
rion value is replaced with this new point. This evolution step is repeated several times with different random
points in a sub-complex.

5. Combining complexes. All points in the complexes are combined together to be one group.

6. SCE Steps (3) – (5) are called a shuffling loop. It is repeated until the results of the complex evolution meet
one of the following end conditions:

• The number of model executions reaches the maximum number of model execution

• The percent change in the best criterion value of the current shuffling loop and that of several shuffling loops
before is less than a specified percentage.

The points converge into a very small region, which is less than 0.1% of the space within the lower and upper
bounds of parameters. The number of complexes used in SCE Step 3 decreases by 1 for every shuffling loop. This
decrease stops when the number of complexes reaches the minimum number of complex required. The output
is the parameter file containing the point (a parameter set) that has the best criterion value.
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Luca Rounds and Steps

Figure 4.3. Rounds and Steps in Luca

In the multi-step calibration technique, a step and a round are defined as follows:

Steps A step is associated with a parameter set, which contains one or more parameter values.

Rounds A round consists of one or more steps.

[TBD]

Specification - luca{}

Name luca - defines a Luca calibration simulation.

Properties  Name  Description Type Required

name the name of the simu-
lation

String y

Sub elements  Name  Description Type Default Occurrences

model the model to exe-
cute

model {} 1

outputstrate-

gy

output manage-
ment

outputstrategy {} StandardOut-

put

?

resource simulation re-
source definition

model {} *



Simulations

51

 Name  Description Type Default Occurrences

calibration_startstart date of cali-
bration

ISODate String - 1

rounds number of
rounds

int 1 ?

step calibration step
definition

step {} - +

Notes • ....

Specification - step{}

Name step - defines a single Luca calibration step.

Properties  Name  Description Type Required

name the name of the step String n

Sub elements  Name  Description Type Default Occurrences

parameter parameter to cal-
ibrate

- - 1

optimization optimization def-
inition

- - 1

max_exec maximum # ex-
ecutions in one
step

int 10000 ?

init_complexes int - ?

points_per_complex int - ?

points_per_subcomplex int - ?

evolutions int - ?

min_complexes int - ?

shuffling_loops int 5 ?

of_percentage double 0.01 ?

Notes • If the name of the step is missing, it will be numbered instead.

Name optimization - defines optimization parameter.

Properties  Name  Description Type Required

simulated the simulated variable
name

String y

observed the observed variable
name

String y

Sub elements  Name  Description Type Default Occurrences

of objective func-
tion definition

of {} - +

Notes • ....
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Name of - defines an objective function.

Properties  Name  Description Type Required

method the objective function NS | RMSE | ABSDIF | LO-
GABSDIF | PMCC 1)

y

timestep the time step for simu-
lated and observed val-
ues

DAILY n (default: DAILY)

weight the objective function
weight

double (0 - 1.0) n 2)

Notes • 1) If the method name is not one of the constants above, it is assumed to be the name of a
user defined Java class that (i) implements the oms3.ObjectiveFunction interface, and (ii) is
available on the CLASSPATH. This was a modeler can implement custom objective function(s)
and use the in a simulation.

• 2) If the weight is not specified, all provided objective functions will be equally weighted.
If specified, it has to be specified for all objective functions. The user has to ensure that the
weights sum up to 1.0 for all objective functions.

Specification - step

Name parameter - defines model parameter to calibrate

Properties  Name  Description Type Required

lower the lower boundary double y

upper the upper boundary double y

strategy the calibration strategy MEAN | VALUES | BINARY n (default: MEAN)

Notes • Only MEAN is implemented at the moment.

5.2. References

SCE Related Papers

Duan, Q., Sorooshian, S. and Gupta, V.K., (1992). Effective and efficient global optimization for conceptual
rainfall-runoff models. Water Resources Research 28 (4), 1015-1031.

Duan, Q., Sorooshian, S. and Gupta, V.K., (1993). A Shuffled Complex Evolution approach for effective and
efficient global minimization. J. of Optimization Theory and its Applications, 76 (3), 501-521.

Duan, Q., Sorooshian, S. and Gupta, V.K., (1994). Optimal use of the SCE-UA global optimization method for
calibrating watershed models. Journal of Hydrology, 158 265-284

Step-Wise, Multiple-Objectiveu Calibration Related Papers

Hay, L.E., Leavesley, G.H., Clark, M.P., Markstrom, S.L., Viger, R.J., and Umemoto, M. (2006). Step-wise,
multiple-objective calibration of a hydrological model for a snowmelt-dominated basin. Journal of the American
Water Resources Association.
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Hay, L.E., Leavesley, G.H., and Clark, M.P., (2006). Use of Remotely-Sensed Snow Covered Area in Watershed
Model Calibration for the Sprague River, Oregon. Joint 8th Federal Interagency Sedimentation Conference and
3rd Federal Interagency Hydrologic Modeling Conference, Reno, Nevada, April, 2006.

Others

Leavesley, G.H. and L.G. Stannard, (1995). The precipitation-runoff modeling system- PRMS. In: Computer Mod-
els of Watershed Hydrology, Water Resources Publications, Highlands Ranch, CO, edited by V.P Singh, Chapter
9, 281-310.

Leavesley, G.H., Restrepo, P.J., Markstrom, S.L., Dixon, M., and Stannard, L.G., (1996). The modular modeling
system - MMS: User's manual: U.S. Geological Survey Open File Report 96-151, 200 p.

6. Automated Model and Component Testing (test)
[TBD]
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Chapter 5. The Modeling Console
The OMS3 Modeling Console is a graphical user interface for the OMS3 Modeling Framework. It provides simple
access to framework core features such as simulation management, output analysis, or documentation generation.
Using the OMS3 Console is one way to interact with the framework. Others methods are the integration of OMS3
into Integrated Development Environments (IDEs) or custom applications for model applications. The main pur-
pose of the OMS3 Console is to allow a modeller a straightforward and simple tool to develop a a model and a
simulation, run the simulation, provide for parameter editing and offer ad-hoc post run analysis and visualization.
Figure ??? provides an overview of the OMS3 Console.

Figure 5.1. The OMS3 Console

The console can be started directly from the OMS download site at http://oms.javaforge.com, by clicking the
Launch button. It is provided as a Java Webstart application that integrates itself into the client's desktop after
installation. As the only prerequisite, a user is required to install the JDK version 1.6 or greater on the client.

The OMS3 Console is a self signed Webstart application. On initial launch it will prompt the user to run the
console, even without certificate validation. Accept this and click on Run the console anyway.

The Console's principal user interface is shown in Figure ???. Many of the user interface elements operate as
known from many other applications (File|Open, File | Save, ...), the specific console user interface elements are
highlighted in Figure ???

Working Directory The working directory sets the base directory and system property oms3.work for a
simulation. It defines a workspace for the simulation. If this folder contains the file
oms3.conf, its content gets loaded and applied for all simulation. For example if the
file oms3.conf contains a list of open files, they will be opened after setting this direc-
tory. The directory can be set using the button next to the directory name.

Simulation tabs Each tab contains one simulation script, tool bar, and associated console output. The
console might have multiple simulations open at one time, however they must origi-
nate from the same workspace. Each simulation tabs operates independent from each
other, means, you can execute one simulation, while editing another one in a different
tab.

Toolbars The console has two tool bars. A global tool bar manages a set of simulations. In
addition, each simulation has its own tool bar, allowing for different operations such
as executing, documenting, etc a simulation. The tool bar action are explained in detail
below.
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Editor The simulation editor allows creating and editing a simulation file.

Console Output This read/only output area, shows all standard and error output from the simulation
run.

Status Line Some informative message during console use.

Each simulation tab contains its own private tool bar (Figure ???). The tool bar actions are always directed towards
the current simulation script in the editor

Figure 5.2. Tool Bars

1. Creates a new, empty simulation.

2. Opens an existing simulation from <working directory>/simulations.

3. Saves all open simulations.

4. Saves the script to a file. If the file is new, it will prompt for a name.

5. Runs the simulation script.

6. Interrupts and stops a running simulation. If no simulation is running this button is disabled.

7. Opens the parameter editor with parameter being loaded from the current simulation. The parameter editor is
explained below.

8. Executes the analysis part of a simulation. This will usually result in an new window containing graphs and
plots. The analysis window is explained in more detail below.

9. Creates Docbook5 documentation of the simulation and stores it into the current output folder.

10.Creates a SHA digital signature of the simulation and prints the simulation fingerprint to the output window.

11.Opens the last output folder using the operating system's file explorer.

12.Clears the console output for this simulation.

13.Logging setting. Define the log level here for your simulation, this will result in more or less verbose output
during simulation execution.

Each tab has a context menu that is accessible with a right mouse click. It allows saving, saving under a different
name, closing, and other operations with respect to the selected tab.
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1. OMS3 Project Workspace
An OMS3 workspace is a recommended but not required directory layout. It is used to store and operate all
resources that belong to a simulation such as model components, climate data files, parameter files, simulations,
output data, documentation. It represents best practice file management and is result of many realized simulation
projects within OMS3. It also complements the folder layout of many Integrated Development Environments, so
an IDE and OMS3 can share the same project or working directories.

The working directory contains at least the folders as shown below with suggested content. This is sufficient to
use the model for simulation runs.

  <Working Directory>
  |   oms3.conf
  +-- simulations      (*.sim, *.luca, *.esp, ...)
  +-- data             (*.csv)
  +-- output           (*.csv)
  +-- dist             (*.jar, *.dll, *.exe)

The <Working Directory> is the root of the project workspace. In the console, it is being set using the user
interface. This folder name is passed to the simulation as a Java system property "oms3.work", that can be read
by the simulation and the model components. The directories have the following content and meaning:

simulations contains simulation files or other scripts. Simulation files execute a model with input data and
produce output. Simple simulations, or scripts for model calibration, uncertainty or sensitivity
analysis can be stored here.

data contains input data to the model, usually climate data or parameter sets. Those file can be OMS3
csv data files or any other data file format.

output this folder will contain the simulation output data after each run. Usually it will have sub-
folders, that have the name of the simulation and further sub folders for each run if output is
versioned. See <outputstrategy> for further details.

dist The dist folder contains all executable code for a simulation run. These are usually platform
independent componet/model *.jar file(s), or platform dependent DLLs (*.dll) or executa-
bles (*.exe), and others.

All the folders above may have sub-folders to store data/code that is for example organized by watershed or other
application area.

It is recommended that the project workspace contains the folders as shown above. The folder organize the different
file types of a project. The project root folder can contain the file oms3.conf.

The workspace can also accommodate for component code development. Add for example a source (src) folder
that will contain the component / model source files. The build process (e.g. managed by an IDE) will build the
executable and store it in the dist folder.

  <Working Directory>
  |   oms3.conf
  +-- simulations      (*.sim, *.luca, *.esp, ...)
  +-- data             (*.csv)
  +-- output           (*.csv)
  +-- dist             (*.jar, *.dll, *.exe)      
  +-- src              (*.java, *.f90, *.c, ..)

src The src folder contains sources, if the workspace is also being used to develop/test components and models.
Source files are Java files (*.java), FORTRAN files (*.for,..), or C/C++ files (*.c, *cpp,...), just
to mention some examples.

In addition to the listed workspace folders, there can be other sub folders needed by IDEs and other development
tools. Note that of a folder name is case sensitive when used in a simulation script.
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1.1. Workspace configuration file 'oms3.conf'

The file oms3.conf is an optional file located in a project working directory. It can be used to provide for project
specific settings to be used by the OMS3 console. The console is usually creating such a file when a working
directory is set. A user can also edit this file and all custom setting for model execution. The file oms3.conf is a
text file that has "key-value-pairs" of configuration information, separated by lines.

oms3.conf Example:

#OMS3 Console Project Configuration
#Mon Apr 09 10:11:09 MDT 2010
open.files=simulation/efcarson/efc.sim;simulation/efcarson/efc.esp
jvm.options=-Xms128M -Xmx256M

The example above shows the some project settings. The entry open.files lists all files relative to the working
directory that should be opened when the workspace is set in the console. The files names are separated by semi-
colon.

The entryjvm.options contains as value additional options for the JVM to be used when executing a simulation.
This can be any valid JVM argument. Usually this option tweaks memory provisioning for the simulation, or
garbage collection adjustments. The example above provides 128 MB of memory initially to the simulation and
sets the maximum available memory to 265 MB. The entry jvm.options should be managed manually by the user.

2. Parameter Editor
The Parameter Editor is a visual tool for parameter editing that is embedded in the OMS3 console. It can be started
by clicking on the appropriate button in the tool bar of a simulation tab. It allows for a presentation and filtering
of parameter values, bulk editing of values, statistics, and basic spread sheet like operations.

The editor works on parameter files that adhere to the OMS3 CSV parameter file format. Such files can be easily
edited with other external tools such as Excel, however the parameter editor provides an easy to use interface to
manipulate parameter values numerically.

Note that only parameter files that are references in a simulation using the .. parameter(file:'<name>') ...
construct can be edited this way. Parameter that are in-lined within the parameter section cannot be presented
and edited here.

Figure 5.3. Parameter Editor



The Modeling Console

58

Figure ??? shows the Parameter Editor with parameter content. The layout of the window is organized as follows.

Parameter File This combo box shows the active parameter file for editing. When opened it lists all pa-
rameter files as specifies in the simulation file. Changing the combo box selection will
cause the while view to change content.

Filter The Filter combo box allows to switch views on parameters. They can be filtered by dimension, by
scalars, or all parameter can be presented as sown in this figure. The selection change in this combo
box will cause the editor values to change.

Command Console The command line on this console allows the (bulk) manipulation of parameter data
shown below. This command line has a history, a help function and offers a powerful
method of editing parameter values. It is further explained below.

Parameter Editor This table shows the parameter names and values. The layout might change when dif-
ferent filter are applied. It has in-place editing capabilities, by clicking on a cell, it value
can be edited and changed.

Figure 5.4. Parameter Editor with applied filter

Figure ??? shows the parameter editor with an applied dimension filter. The table presents all parameter that are
bound to a specific dimension. Selecting cells in the table will print basic statistics about those on the bottom of
the window. Any area can be selected, a column selection will print statistics about the whole column.

2.1. Parameter Editor Console

The Parameter Editor contains a command line console at the upper part of the window. It allows the

3. Analysis Output

The analysis output window provides ad-hoc result information as defined in the analysis section of a simulation.
It is executed by pressing the Analysis Button in the tool bar in a simulation tab. A analysis window might look
like Figure ???
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Figure 5.5. Analysis Output

The tile bar shows the output folder that is used to perform the output data analysis. Depending on the setting in
<outputstrategy>, such output can be versioned or unversioned. Either way, the last output folder of a simulation
run is presented.

The analysis section of a simulation files allows the definition of plots such as timeseries, error plots, scatter
plots, esp-trace analysis plots, and others. Each of these plots will appear as a tab in the analysis window, the
plot title shows as a tab name.

A part of the analysis section used to create the plots in Figure ??? is shown below.

  ...
  analysis(title:"Simulation Output") {
        timeseries(title:"East Fork Carson", view: COMBINED) {  
            x(file:"%last/out1.csv", column:"date")
            y(file:"%last/out1.csv", column:"basin_cfs")
            calc(eq:"sim - obs") {
                sim(file:"%last/out1.csv", column:"basin_cfs")
                obs(file:"%last/out1.csv", column:"runoff[0]")
            }
            y(file:"%last/out1.csv", column:"runoff[0]")
        } 
        timeseries(title:"Error", view: MULTI ) {
          ...

It is clear how the timeseries section content maps to the visual view. Note the the variable %last references
the last output folder of a simulation run. The plot also has a calculated column.

Note that an analysis section of a simulation is only being used when invoked. A regular simulation run does not
perform the data analysis.
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Chapter 6. Advanced Techniques
In this chapter, several advances framework aspects

1. Simulation Traceability and Audit Support

Managing and tracking the simulation process is as just as important as the simulation principles and methods
themselves. Authorities who use simulations for predictions, and forecasts that effect the public are required to
manage the trail of resources that where used to produce a particular prediction. At any given time and on (legal)
requests a simulation output must be reproduced by recalling and recreating the simulation conditions at that time.

Simulation traceability is a core feature of OMS3. There are several aspects that should be combined to provide
for a secure solution for output audit trails.

• A Version Control System (VCS) for software version tracking must be used to host and version all model
resources such as source components, parameter and data files, and the simulation file in a repositories. All files
must carry the VersionInfo and SourceInfo annotation (for source code), and the corresponding meta data
entries for csv files. If supported, the VCS should be setup to support keyword substitution on source files.

• Any OMS simulation can generate a Secure Hash Algorithm digest (SHA digest) of all involved simulation
resources. As a default algorithm SHA-256 is being used, however is could be replaced (by setting the system
property 'oms3.digest.algorithm') with a stronger hash function (SHA-384 or SHA-512). A simulation digest
is therefor a secure hash that is unique to a simulation configuration. It is being computed before the simulation
starts.

The is being applied in different ways:

• If computed (simu parameter is set digest:true) the simulation sets the system property oms3.digest to
the digest value. Any component in the model can now access this system property, for example an output
component might carry this value into a generated output file.

An fragment of an output component writing the Digest as text to a file file might look like this:

 @Intitialize
 void init() {
     ...
     String v = System.getProperty("oms3.digest");
     if (v != null) {
         file.println(" Digest," + v);
     }
     ...
 }

• The simulation method digest() can be invoked to create a digest record creating the tuple (<digest>,
<simulation resources>). As default, this call prints the digest and the SourceInfo/VersionInfo records
of all components/datafiles of that simulation to the console. Such information might be further processed
for inclusion in a secure store (e.g. data base):

 println sim.digest()

 6b2d424e12626c65b6f9e3136de735703d405d4f207395797d9f9b4487a23e7f
    tw.Climate &  & 
    tw.Daylen &  & 
    tw.HamonET &  & 
    tw.Output &  & 
    tw.Runoff &  & 
    tw.Snow &  & 
    tw.SoilMoisture &  & 
> 
//// update the above!!!!!!!
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The example above shows the simulation digest record for the Thornthwaite model. The first line contains
the digest, followed by the simulation resources.

• There a other infrastructure pieces required such as a data base for digest storage and retrieval.

The principal architecture for simulation traceability in OMS3 is shown in the Figure ???. It illustrates the inte-
gration with a version control system for resource tracking and a data base for digest tuple tracking.

Figure 6.1. Simulation Traceability Schematic

OMS3 provides a core simulation digest infrastructure that can be complemented with 'inverse' tools allowing for
example (i) the automatic recreation of simulation configurations based on output data sets using simulation digest
records, or (ii) the validation of output records against a set of 'certified' simulations in a master data base. As a
result any model integrated in OMS3 can benefit from this integrity ensuring feature.

1.1. References

• SHA Hash functions [http://en.wikipedia.org/wiki/SHA_hash_functions]

• JCA Reference guide [http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html]

2. Digitally Signing Models
Once a model is deployed as a jar file, it can be digitally sign with an electronic signature. A digital signature
ensures the integrity of the developed simulation. Once signed a simulation jar cannot be altered: Components,
default parameter settings, and the model cannot be switched or patched. The signature protects the investment to
develop a complex simulation setup. However you can overwrite public parameter values, an can control output
generation.

2.1. Creating a self signed certificate

You have to have install the Java SDK from http://java.sun.com/j2se/downloads.html; the tools have to be in your
path
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Step 1 - Create a key:

 keytool -alias keyname -genkey

This will create a new keystore (usually $HOME/.keystore) if not present or add to it.

Step 2 - Sign the jar file using the key - Sign sim.jar:

 jarsigner sim.jar keyname

2.2. Importing an issued certificate

An issued certificate from a certification authority can be imported:

$ keytool -import -alias od  -file OD.cer

2.3. Validating the Integrity of a Simulation

Once a Simulation jar is signed it gets verified on execution:

$ java -jar EFC.jar

If verification fails, execution will abort. You can also verify the Simulation Jar with the jarsigner tool. You
can also verify the Simulation Jar with the jarsigner tool

$ jarsigner -verify  EFC.jar
jar verified.

Warning: 
This jar contains entries whose signer certificate will expire within six months. 

Re-run with the -verbose and -certs options for more details.

To get more details on certain component signatures:

$ jarsigner -verbose -certs -verify  EFC.jar
...

smk     1536 Thu May 24 10:17:22 MDT 2007  gov/usgs/prms/PrecipKrig.class

      X.509, CN=Olaf David, OU=CSU, O=CSU, L=FC, ST=CO, C=US (od)
      [certificate will expire on 1/14/09 10:44 AM]

smk     1593 Thu May 24 10:17:22 MDT 2007 gov/usgs/prms/Obs.class

      X.509, CN=Olaf David, OU=CSU, O=CSU, L=FC, ST=CO, C=US (od)
      [certificate will expire on 1/14/09 10:44 AM]
...

  s = signature was verified 
  m = entry is listed in manifest
  k = at least one certificate was found in keystore
  i = at least one certificate was found in identity scope

These examples show different levels of protecting a model jar using digital signatures

The Jar deployment of OMS model is easy to perform and has the following features and benefits. Simulations can
be packaged into an executable simulation jar. The simulation jar contains all code, data, and resources as defined
within the IDE to run the simulation. To run a simulation only a Java Runtime Environment and the Simulation
Jar are needed, no OMS installation is required. Simulation jars are sealed and can be digitally signed. Therefore
a deployed simulation jar is secure and cannot be compromised. Simulation jars carry all information about the
origin of resources that make up this simulation such as the version of components, data sets and the model. All
sources can be traced back, if version info is present.



Advanced Techniques

63

3. Documenting Simulations
Component Documentation can be generated from sources or binary classes.

package prms2008;

import java.util.Calendar;
import java.util.logging.*;
import oms3.annotations.*;
import static oms3.annotations.Role.*;

@Description
    ("Potential ET - Jensen Haise." +
    "Determines whether current time period is one of active" +
    "transpiration and computes the potential evapotranspiration" +
    "for each HRU using the Jensen-Haise formulation.")
@Author
    (name= "George H. Leavesley", contact= "ghleavesley@colostate.edu")
@Keywords
    ("Evapotranspiration")
@Bibliography
    ("Leavesley, G. H., Lichty, R. W., Troutman, B. M., and Saindon, L. G., 1983, "+
     "Precipitation-runoff modeling " +
     "system--user's manual: U. S. Geological Survey Water Resources Investigations " +
     "report 83-4238, 207 p.")
@VersionInfo
    ("$Id: PotetJh.java 390 2009-09-01 19:56:07Z ghleavesley $")
@SourceInfo
    ("$URL: http://svn.javaforge.com/svn/oms/branches/oms3.prj.prms2008/src/prms2008/PotetJh.java $")
@License
    ("http://www.gnu.org/licenses/gpl-2.0.html")
@Documentation
    ("file:/C:/od/projects/ngmf.models/src/prms2008/PotetJh.xml")
@Status
    (Status.TESTED)
    
public class PotetJh  {

    // private fields
    double[] tmax_sum;

    // "Indicator for whether within period to check for beginning of transpiration, 0=no, 1=yes.
    int[]    transp_check;
    int[]    transp_end_12;

    // Input params
    @Role(PARAMETER)
    @In public int nhru;
    @Role(PARAMETER)
    @In public int nsol;

    @Role(PARAMETER)
    @Description("HRU area ,  Area of each HRU")
    @Unit("acres")
    @In public double[] hru_area;

    @Role(PARAMETER)
    @Description("Monthly air temp coefficient - Jensen-Haise Monthly air " +
        "temperature coefficient used in Jensen -Haise potential evapotranspiration " +
        "computations, see  PRMS manual for calculation method")
    @Unit("per degrees")
    @In public double[] jh_coef;

    @Role(PARAMETER)
    @Description("HRU air temp coefficient - Jensen-Haise Air temperature " +
        "coefficient used in Jensen-Haise potential  evapotranspiration " +
        "computations for each HRU.  See PRMS  manual for calculation method")
    @Unit("per degrees")
    @In public double[] jh_coef_hru;
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    @Role(PARAMETER)
    @Description("Units for measured temperature Units for measured " +
            "temperature (0=Fahrenheit; 1=Celsius)")
    @In public int temp_units;

    @Role(PARAMETER)
    @Description("Month to begin testing for transpiration Month to begin " +
        "summing tmaxf for each HRU; when sum is  >= to transp_tmax, transpiration begins")
    @Unit("month")
    @In public int[] transp_beg;

    @Role(PARAMETER)
    @Description("Month to stop transpiration period Month to stop transpiration " +
        "computations;  transpiration is computed thru end of previous month")
    @Unit("month")
    @In public int[] transp_end;

    @Role(PARAMETER)
    @Description("Tmax index to determine start of transpiration Temperature " +
        "index to determine the specific date of the  start of the transpiration " +
        "period.  Subroutine sums tmax  for each HRU starting with the first " +
        "day of month  transp_beg.  When the sum exceeds this index, transpiration begins")
    @Unit("degrees")
    @In public double[] transp_tmax;

    // Input vars
    @Description("The computed solar radiation for each HRU. [solrad]")
    @Unit("calories/cm2")
    @In public double[] swrad;

    @Description("Average HRU temperature. [temp]")
    @Unit("C")
    @In public double[] tavgc;

    @Description("Average HRU temperature. [temp]")
    @Unit("F")
    @In public double[] tavgf;

    @Description("Maximum HRU temperature. [temp]")
    @Unit("C")
    @In public double[] tmaxc;

    @Description("Maximum HRU temperature. [temp]")
    @Unit("F")
    @In public double[] tmaxf;

    @In public double deltim;
    @In public int active_hrus;
    @In public int[] hru_route_order;
    @In public double basin_area_inv;
    @In public int newday;
    @In public int route_on;
    @In public Calendar date;

    // Output vars
    @Description("Switch indicating whether transpiration is occurring  " +
        "anywhere in the basin (0=no; 1=yes)")
    @Out public int basin_transp_on;

    @Description("Switch indicating whether transpiration is occurring (0=no; 1=yes)")
    @Out public int[] transp_on;

    @Description("Potential evapotranspiration on an HRU")
    @Unit("inches")
    @Out public double[] potet;

    @Description("Basin area-weighted average of potential et")
    @Unit("inches")



Advanced Techniques

65

    @Out public double basin_potet;

    @Out public double basin_potet_jh;
    
    private void init() {
       // init ...
    }
    
    @Execute
    public void execute() {
       // execute code ...
    }
}

The following section shows the documentation as it is created from the PotetJH.java class as a docbook5 section.

4. Native Language Interoperability

The use of modeling code written in languages other that Java is supported in OMS. This enables legacy code
written in 'scientific' simulation languages such as FORTRAN, C, C++ to be used within an OMS model. All
native interoperability as described below is accomplished using the Java Native Architecture (JNA) , an open
source library that emphasizes an easy integration of Dynamic Linkable Libraries into Java.

JNA has been originally developed to allow for easy Java - C/C++ communication. It does not burden the developer
with traditionally JNI (Java Native Interface) management and other intermediate files/APIs. In contrast to JNI
which supports static interoperability, JNA uses dynamic dispatching at runtime to connect to native DLLs directly
from Java. JNA's design aims to provide native access in a natural way with a minimum of effort. No boilerplate or
generated code is required. While some attention is paid to performance, correctness and ease of use take priority.

4.1. FORTRAN 90/95

This section will introduce the use of JNA (Java Native Architecture) for direct Java/FORTRAN interoperability.

Examples for C/C++ are discussed in detail at the JNA website, however the use of FORTRAN within the scientific
community is as much as important. It can be achieved with the 'out-of-the-box' JNA library. The objective of this
section is to show how to craft, compile, and link FORTRAN code to be accessible directly from Java using JNA.

4.1.1. General Setup

The following FORTRAN example function takes two arguments and returns their product.

 ! Multiplication function that binds to the C language as 'foomult'
 FUNCTION mult(a, b) BIND(C, name='foomult')
    ! both arguments are passed by value
    INTEGER,VALUE :: a,b
    INTEGER :: mult

    mult = a * b
 END FUNCTION mult

• It uses the BIND keyword to provide for a C name binding. In Java/JNA this function can be called under that
name.

• The function parameter are declared as value parameter. If omitted, a and b would be passed in by reference.

The FORTRAN function above can be referenced and used in Java using JNA. OMS provides on top of JNA a small
convenience library that makes handling of DLLs even easier with respect to runtime binding and deployment.
The use of this library is not required, however it makes the integration straightforward and simplifies deployment.

 import oms3.annotation.*;

 @DLL("F90Dyn")
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 interface F95Test extends com.sun.jna.Library {
    // java interface method to FORTRAN
    int foomult(int a, int b);
 } 

 // Bind 'F90Dyn.dll' to the interface 'F95Test'
 F95Test lib = Libraries.bindLibrary(F95Test.class);

• The FORTRAN function resides in file libF90.dll, that is accessible in the jna.library.path.

• The static call Libraries.bindibrary belongs to the JNA API and binds all interface methods as specified
in F95Test to their counterparts in libF90.dll.

• The Java interface function maps to the name as specified in BIND. This solves naming problems that results
from different handling of symbol names in object files/dlls with respect to underscoring. Using BIND is highly
recommended, since it ensures a consistent external name for the function/subroutine regardless of the compiler
being used and its location within a module.

• Since function arguments are passed in by value, regular native int types can be used within the Java interface
method. However, assigning new values within the FORTRAN function to a and b won't be propagated to the
caller. Use the 'Call by reference' method if this is desired.

The method can now be called like this:

 ...
 int result = lib.foomult(20, 20);
 assert result ==  400;
 ...

For more details on compiling/linking see further below.

4.1.2. Scalar Arguments by Value

 ! Multiplication function that binds to the C language as 'foomult'
 FUNCTION mult(a, b) BIND(C, name='foomult')
    ! both arguments are passed by value
    INTEGER,VALUE :: a,b
    INTEGER :: mult

    mult = a * b
 END FUNCTION mult

 import oms3.annotation.*;

 @DLL("F90Dyn")
 interface F95Test extends com.sun.jna.Library {
    // java interface method to FORTRAN
    int foomult(int a, int b);
 } 

 // Bind 'F90Dyn.dll' to the interface 'F95Test'
 F95Test lib = Libraries.bindLibrary(F95Test.class);

4.1.3. Scalar Arguments by Reference.

To call a subroutine with arguments by reference, you shall not use the VALUE keyword on FORTRAN argument
declaration. Now you can assign new values to the arguments, that will be later visible to Java.

 SUBROUTINE ffunc(a, b) BIND(C,"reffunc")
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    INTEGER :: a,b
    a = 3
    b = 5
 END SUBROUTINE

The Java interface method needs to be modified to support call by reference via the JNA API ByReference classes.

 ...
 void reffunc(ByReference a, ByReference b);
 ...

The reffunc subroutine will be called as follows:

 ...
 IntByReference a = new IntByReference(0);
 IntByReference b = new IntByReference(0);
 F95Test.lib.reffunc(a, b);
 assertEquals(3, a.getValue());
 assertEquals(5, b.getValue());
 ...

Now you create the int reference objects, pass them into reffunc and retrieve the values with .getValue().

4.1.4. Array Arguments

Single and Multidimensional arrays can be handled in JNA/Java and FORTRAN. Like with Strings, the length of
the array has to be passed in with additional arguments.

 SUBROUTINE inc(arr, len) BIND(C, name='fooinc')
    INTEGER,DIMENSION(len) :: arr
    INTEGER,VALUE :: len
    INTEGER :: i

    DO i = 1, len
        arr(i) = arr(i) + 30
    END DO
 END SUBROUTINE

 SUBROUTINE arr2d(arr, m, n) BIND(C, name='arr2d')
    INTEGER,DIMENSION(m,n) :: arr
    INTEGER,VALUE :: m
    INTEGER,VALUE :: n
    INTEGER :: i,j

    DO i = 1, m
        DO j = 1, n
            arr(i,j) = arr(i,j) + 1
        END DO
    END DO
 END SUBROUTINE

The examples above show the declaration and the use of a one and two dimensional array as subroutine arguments.
The array is dimensioned by the extra parameter, they are passed in as value arguments.

The JNA/Java declaration part is shown below. Note that the multidimensional array, has to be one-dimensional
in Java. FORTRAN will lay it out correctly by using the dimension lengths that are passed in.

 interface F95Test extends Library {
   ...
   void fooinc(int[] arr, int len);
   void arr2d(int[] arr, int m, int n);
   ...
 }

The use if the one dimensional array is pretty simple. The other example required a bit management on the Java
side, that is not shown here.
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 //1D
 int[] a = {1, 2, 3, 4, 5};
 lib.fooinc(a, a.length);
 assertArrayEquals(new int[]{31, 32, 33, 34, 35}, a);

 //2D
 int[] a = {1, 2, 3, 4, 5, 6};
 lib.arr2d(a, 3, 2);
 assertArrayEquals(new int[]{2, 3, 4, 5, 6, 7}, a);

If a real Java multidimensional array needs to used in FORTRAN, it needs to be flattened into 1D, or you use an
access method in Java to use a 1D Array in a 2D way.

4.1.5. String Arguments

String arguments are always special, since Strings are represented differently in almost all languages. In FOR-
TRAN, you declare a string argument as follows, note that the size of the string has to be passed in as an additional
argument.

The following function takes a string argument and verifies the content and length. The argument line is defined
as a CHARACTER array, its length is passed as a second argument by value, and it is being used to dimension the
length of the string.

 FUNCTION strpass(line, b) BIND(C, name='foostr')
    CHARACTER(len=b) :: line
    INTEGER, VALUE :: b
    LOGICAL :: strpass

    strpass = (line == 'str_test') .AND. (b == 8)
 END FUNCTION

The Java/JNA prototype looks like this:

 ...
 boolean foostr(String s, int len);
 ...

The application will need to pass in the string and obtain the actual string length.

 ...
 String test = "str_test";
 boolean result = lib.foostr(test, test.length());
 assertTrue(result);
 ...

4.1.6. Modules

Modules can be used to place all subroutines/functions that should be used via JNA, its good practice. A module
allows for global data, an module level IMPLICIT NONE. Again, it is recommended to use the BIND keyword since
the compiler might alter the subroutine name in the DLL otherwise, since it is a different scope.

 MODULE test

  IMPLICIT NONE

  CONTAINS
    
  SUBROUTINE ffunc(a, b) BIND(C,"reffunc")
     INTEGER :: a,b
     a = 3 
     b = 5
  END SUBROUTINE
 
 END MODULE test
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The example above the subroutine ffunc can still be called as reffunc from JNA/Java.

4.1.7. TYPE Arguments

Type arguments for functions can be handled too. This allows the passing of complex objects directly from Java to
FORTRAN. Lets suppose you have the following FORTRAN code, that defines a TYPE for a City and a subroutine
typepass that takes such an argument.

 MODULE test

  IMPLICIT NONE

  TYPE :: City
    INTEGER  :: Population
    REAL(8)  :: Latitude, Longitude
    INTEGER  :: Elevation              
  END TYPE

  CONTAINS

  SUBROUTINE typepass(c) BIND(C, name='footype')
    TYPE(CITY) :: c

    c%Population = c%Population + 1000
    c%Latitude = c%Latitude + 5
    c%Longitude = c%Longitude + 5
    c%Elevation = c%Elevation + 9
  END SUBROUTINE

 END MODULE test

Both the TYPE and the subroutine are placed in a module.

Now lets look at the JNA/Java counterpart that defines the interface for typepass:

 import com.sun.jna.Library;
 import com.sun.jna.Structure;

 public static class City extends Structure {
    public int Population;
    public double Latitude, Longitude;
    public int Elevation;
 }

 @DLL(F95Test)
 interface F95Test extends Library {
    void footype(City c);
 }

There is an Java class called City that must have the identical internal layout to its FORTRAN TYPE. The names,
however, do not matter. It also has to be subclass of Structure which is defined in the JNA API.

Note that all fields of City have to be public to allow JNA to compute its size. The F95Test method again used
the BIND name and the City argument.

An application will instantiate theCity object and pass it in as usual.

 ...
 City city = new City(3000, 0.222, 0.333, 1001);
 F95Test.lib.footype(city);

 assertEquals(4000, city.Population);
 assertEquals(5.222, city.Latitude, 0.0001);
 assertEquals(5.333, city.Longitude, 0.0001);
 assertEquals(1010, city.Elevation);
 ...
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4.1.8. Pitfalls and Obstacles

• Always be aware that FORTRAN subroutine/function arguments are passed by reference, unless the VAL-
UE modifier is used. You might end up accessing memory that might cause a segfault. Therefor use always
Native.setProtected(true) to provide for more memory protection in the JNA site, if supported for your
architecture.

• If JNA cannot find your function in a DLL and both names match in source, do not panic. You should explore
the DLL to find out the real name in your DLL, since this is what JNA is looking at not the source. Do something
like nm libF90Test.dll | grep reffunc if reffunc is the function you'd like to call. You'll see maybe
a different (more underscores in the name, or a module name prefix) name depending on the compiler and
compiler flags. This is the name you should use in your Java interface. To make this more transparent use the
BIND keyword in your source to ensure the proper name in the DLL.

• If you pass Java objects to FORTRAN as TYPE, all Java fields have to be public. JNA will complain at runtime
not being able to determine the size of the Java object.

• Be aware of the array ordering in FORTRAN that sees a two dimensional array always in COLUMN/ROW
order. Also, you cannot pass a real multidimensional Java array to FORTRAN, since those do not have a con-
tinuous memory layout. On the Java side you always have to manage a one dimensional array that you reshape
for FORTRAN by passing its dimensions into the function/subroutine.

• If a DLL cannot be found at runtime, you need to set the search path. You can set the system property
jna.library.path to point to paths on your file system. You also use the NativeLibrary.addSearchPath
method to add a map a directory to a specific DLL name.

4.1.9. Data Type Mapping

The following table shows equivalent data types between FORTRAN and Java, when passed by value

Table 6.1. JNA FORTRAN-Java Data Type Mapping

 FORTRAN  JAVA

INTEGER(Kind=8) int

INTEGER(Kind=4) short

REAL(Kind=4) float

REAL(Kind=8) double

LOGICAL boolean

CHARACTER byte

CHARACTER(len=) String

4.1.10. DLL Generation

he following sections will provide some help for managing the build process using different compilers. GNU's
compiler collection and the G95 spin-off, as well as the Intel Compiler suite seem to be the most important tools
for the general developer.

4.1.10.1. G95

G95 allows compiling and linking into a DLL. Note that G95 is not a part of the GNU compiler collection. To
compile and link a FORTRAN source into a DLL use the following flags for GCC tools:

Compile a FORTRAN source into an object file:

 $ g95 -fno-underscoring  -c -g -o build/ftest.o ftest.f90
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Link the DLL:

 $ g95 -Wl,--add-stdcall-alias -shared -o dist/libF90Dyn.dll build/ftest.o  

Note that you have to use G95 for linking too. This ensures for linking the right FORTRAN runtime libraries
into your DLL

4.1.10.2. GFortran

[TBD]

4.1.10.3. Intel FORTRAN

[TBD]

4.2. C/C++

[TBD]

4.2.1. Dynamic Link Library Generation

[TBD]

4.3. References

• JNA

• GCC

• Intel Compiler

5. Embedding OMS
[tbd]

Use cases:

• hand over a simulation to a user who just wants to apply the model

• a model will be used in a deployment environment such as a web server, etc.

• a simulation should be certified for production by an authorized person or institution, the simulation can be
explored since it is self-documenting with respect to its components, model, and parameter files.

A simulation is deployed as a Jar file. This is called a Simulation Jar. This simulation jar has the following char-
acteristics

• It contains all the resources that are required by that simulation such as the simulation file, the model, the
components, default parameter sets, libraries.

• It also contains all the OMS runtime classes to execute the simulation.

• It contains description about the origin and version of those resources.

•
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The simulation jar is self contained, no other external classes are required to run the simulation, everything needed
is packaged together. The simulation jar is also 'sealed'. Only classes from within the simulation file are being
used for execution, no external code cannot be injected into the simulation. This is an important security feature.
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Appendix A. Glossary
Annotation A Java annotation is a special form of syntactic meta data that can be added

to Java source code. This feature is available in Java 5+.

CBSE Component Based Software Engineering

Component A component is a software unit (class, module) which provides an implemen-
tation for exact modeling concept. It is context-independent both in the con-
ceptual and technical domain.

Compound A Compound is a complex component containing other simple and compound
components.

Model A compound assembly of components to that has a application use case. In
general is being used to express relevant system aspects in a mathematical/al-
gorithmic form.

Model Base A family of related model components.

JAR (Java Archive) Java archive. A jar file (*.jar) contains a directory structure of Java files and
other resources. It can be compressed.

JVM Java Virtual Machine. The execution environment for Java Byte code.

Interface An interface declares a certain behavior of a class. It is a type that specifies
but never implement methods.

Meta Data Context information about data such as physical unit of a variable, its valid
range constraints, etc.

Unit Predefined unit to express or measure a quality.

CLASSPATH A classpath is an environment variable that list a set of directories containing
Java .jar or .class files that are being used in an application.

Java Virtual Machine (JVM) The JVM executes the bytecode (*.class) produces by a java compiler

POJO Plain Old Java Object

IEF Initialize/Execute/Finalize, a shortcut describing the structural concept of
components.

SHA Secure Hash Algorithm
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Appendix B. Annotation Reference
1. Annotation Types
Annotations are used to specify resources within a class that relate to its use as a modeling component for OMS3.
Such annotations may have different relevance and importance to different aspects of the use of component use.
The same annotations can also play different roles depending on their context. There are three main annotation
categories:

Mandatory Execution Annotations Such meta data is essential information for component execution (in ad-
dition to the documentation purpose). Thee describe method invocation
points and data flow between components. This is required meta data.

Supporting Execution Annotations Such meta data supports the execution by providing additional information
about the kind of data flow, physical units, and range constraints that might
be used during execution. This is optional meta data.

Documentation Annotations Those annotations are being used for documentations, presentation layers,
databases, and other content management system. This is required meta
data for component publication, but optional for execution.

What are Annotations? Annotations are a Java feature since version 1.5. They are an add-on to the Java language
to allow for custom and domain specific markups of language elements. They do not affect directly the class
semantics, but they do affect the way classes are treated by tools, such as a modeling framework. Annotations
can be seen as extension of the Java Classes with meta information that can be obtained up from sources files,
compiled classes, or loaded classes at runtime. They respect also languages scopes and are supported by Java IDEs
with code completion and syntax highlighting.

The table below shows all modeling annotations categorized by language elements they are describing.

Table B.1. Component Annotations Overview

 Class Field Method

@Description @Description @Execute 1)

@Author @In 1) @Initialize

@Bibliography @Out 1) @Finalize

@Status @Unit

@VersionInfo @Range

@Keywords @Role

@Label @Bound

@SourceInfo @Label

@License

@Documentation

@DLL 2)

Note
1) Required annotation for a component.

2) Interface annotation for Native Language integration

Annotation names always start with the '@' character, indicating the difference to a regular class. The @ (at) sign
was chosen because 'AT' can be seen as abbreviation for 'Annotation Type'. Annotations can only appear once for
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a given language element. For example it is illegal to use the @Author annotation twice for a component. Instead,
the name field of an @Author should list the two names, separated by some delimiter.

The following sections introduce all modeling annotations in detail, examples are given.

1.1. @Description

The @Description annotation provides for component summary information, such as a brief paragraph about
its purpose, scientific background, etc. It is being used for automatic capturing the purpose of a component by
archiving tools, online presentation or documentation tools, or to supplement database integration. The component
selection during the process of model building and repository management can be supported by this annotation
which should not exceed a few sentences. If more context information need to be provided, the @Documentation
annotation should be used in addition.

Synopsis @Description(<String>)

arg - the description paragraph

The description can be localized for different languages. Add the ISO language code (http://
ftp.ics.uci.edu/pub/ietf/http/related/iso639.txt) to provide description in a different language. De-
scription for multiple languages is supported.

Type Documentation Annotation

Scope Class, Field

Example  @Description
   ("Circle Area Calculation.")

 public class CircleArea {
    ...
    @Description("Radius")
    @In public double r;    
    ...
 }
..

 @Description
   (en="Circle Area Calculation.",
    de="Berechnung der Kreisflaeche")

 public class CircleArea {
    ...
    @Description("Radius")
    @In public double r;    
    ...
 }
..

1.2. @Documentation

The @Documentation annotation serves as a connector or link to more detailed background documentation about
the component. It allows to reference other documents via a URL. Usually those documents reside on a public
server or local hard drive as PDF, HTML, Docbook, or an other text document. The reference is provided as using
different URL protocols such as http://..., https://..., file://...

Synopsis @Documentation(<URL>)

arg - URL reference to more detailed documentation.

Type Documentation Annotation

Scope Class
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Example  @Documentation
   ("http://myserver.com/docs/CricleArea.pdf")
 public class CircleArea {
    ...
 }

1.3. @Author

The optional @Author annotation provides information about the authorship of the component. The annotation has
sub the fields name, org, and contact provide more details about the name, the affiliated organization, and some
contact information such as an email address, or a link to a home page.

Synopsis @Author(name=<String>, org=<String>, contact=<String>)

name - the name of the authors(s)

org - organization name (optional)

contact - contract information such as email or address (optional)

Type Documentation Annotation

Scope Class

Example  @Author
   (name="Joe Scientist", 
    org="Research Org", 
    contact="joe.scientist@research-org.edu")

 public class HamonET 
     ...
 }

1.4. @Status

This annotation enriches a component with some development and deployment status information. A status is a
component quality indicator. A developer can specify the level of completeness or maturity of a component with
this tag.

Synopsis @Status(<Enum>)

arg - Status.DRAFT (Initial development status, private prototype)

Status.SHARED, (component worth sharing, still in development)

Status.TESTED, (component is tested in a model, test datasets and unit tests

available)

Status.VERIFIED, (component is implemented properly, complete)

Status.VALIDATED, (Component fulfills requirements, validation tests available

Status.CERTIFIED (Component accepted and certified by authorty)

Type Documentation Annotation

Scope Class

Example  @Description
    ("Circle Area Calculation.")
 @Status
    (Status.TESTED)
 public class CircleArea {  
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    ...
 }

This annotation might be consumed by tools that publish the component to a component repository, it should
control the publication process. Another use case would be the pre-run check of a deployed model that all of its
components are certified by a authority.

1.5. @VersionInfo

The @VersionInfo annotation takes a argument that represents the version of this component. A developer might
use version control system supported keyword substitution for this. The example below shows the use of the Sub-
version keywords $Id to provide revision number, modification time, and committer name as version information
record. Major version control systems (CVS, Subversion,...) either have a built-in support for this feature or it can
be used in conjunction with external tools (Mercurial, GIT). Therefore this annotation should not only contain an
arbitrary version number, but a full version record instead is good common practice.

Synopsis @VersionInfo(<String>)

arg - Version information record

Type Documentation Annotation

Scope Class

Example  @VersionInfo
    ("$Id: ET.java 20 2008-07-25 22:31:07Z od $") 
 public class ET {
   ...
 }

Component repositories can use and present this information, archiving tools or documentation generators might
pick this up too.

1.6. @SourceInfo

The @SourceInfo annotation captures information about the source. This should be some hint about source avail-
ability, maybe the source location or some contact information. The example below shows the use of Subversion's
keyword substitution for the head URL of a source file. It can also point to a specific tagged version with a repos-
itory.

Synopsis @SourceInfo(<String>)

arg - source URL reference

Type Documentation Annotation

Scope Class

Example  @SourceInfo
    ("$HeadURL: http://www.test.org/repo/ET.java $") 
 public class ET {
    ...
 }

@SourceInfo is optional. Component repositories or documentation generators can use and present this informa-
tion

1.7. @Keywords

A component an be tagged with the @Keywords annotation to characterize/categorize it. It does have the same
purpose like a keyword list in a scientific paper. This is optional meta data and can be used to index, search, and
retrieve archived and stored components. It is optional meta data.
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Synopsis @Keywords(<String>)

arg - list of kerwords separated by comma

Type Documentation Annotation

Scope Class

Example  @Description
    ("Circle Area Calculation.")
 @Keywords
    ("Geometry, 2D")
 public class CircleArea {  
    ...
 }

1.8. @License

The @License annotation to specify the license for a component. It is optional meta data. If not present it is assumed
the component is in the public domain and there are no restrictions for its reuse. The license can be in lined text,
however it is recommended to use a URL to point to the license text.

Synopsis @License(<String>)

arg - the license text or a URL to its location

Type Documentation Annotation

Scope Class

Example  @Description("Circle Area Calculation.")
 @License("http://www.gnu.org/licenses/gpl-2.0.html")
 public class CircleArea {  
    ...
 }

1.9. @Label

Labels relate to ontologies (label is an OWL annotation). Labeling a field or component maybe provides for
alternative names. They can be used to relate components or fields to another naming convention, terminology,
or ontologies.

Synopsis @Label(<String>)

arg - an alternative name

Type Documentation Annotation

Scope Class, Field

Example  public class Calc {
     @Label("latitude")  
     @In public double lat; 
      ...
 }

Labels are optional.

1.10. @In

The @In annotation on a field specifies it as input to the component. The field must be public. It indicates a read
(or input access) from within the Execute method to the field. There are no arguments for this annotation.
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Synopsis @In

Type execution, documentation annotation

Scope Field

Example  ...
 @In public double latitude;
 ...

This annotation is a required annotation for execution to enable data flow between components. @Out fields of
one component might be connected to an @In field of a second component.

1.11. @Out

The @Out annotation on a field specifies it as output of the component. The field must be public and the Execute
method will write to it. It is used to connect to an @In field of another component. There are no arguments for
this annotation.

Synopsis @Out

Type execution, documentation annotation

Scope Field

Example   ...
  @Out public double daylen;
  ...

This annotation is a required annotation for execution to enable data flow between components. @Out fields of
one component might be connected to an @In field of a second component.

1.12. @Range

The @Range annotation is supporting an @In or an @Out field. If present, it defines a min/max range in which the
value of the field is considered valid. It is up to the execution runtime to handle the range information. Violating
a ranges might lead to execution abortion if it is a serious problem or just a warning message. Another use of the
range information would be in component testing, see Section ???.

Synopsis @Range(min=<double>, max=<double>)

min - the minimum value, (default=Double.MIN)

max - the maximum value, (default=Double.MAX)

Type Execution Annotation

Scope Field

Example  ...
 @Range (min=-90, max=90)
 @In public double latitude;
 ...

In the example above the latitude value can only be in the range of -90 to +90 degree. A value out of
this range would probably break any equation that is using latitude. The range use above is similar
to a pre-execution check.

1.13. @Role

The @Role annotation gives an @In or @Out tagged field a certain meaning within the modeling domain. It allows
someone to understand the meaning of a data field within the modeling context. A @Role annotation categorizes
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a field. Such categories might be "Parameter", "Variable", "Output", "Input", "Simulated" and others. The Role
annotation takes the category as a String parameter. There are predefined categories defined in @Role, however
categories can be defined by the component developer.

If the @Role annotation is not provided, the default Role.VARIABLE it is assumed.

Synopsis @Role(<String>)

arg - the role that this field is playing in context of the component.

predefined:

Role.PARAMETER, Role.VARIABLE, Role.SIMULATED, Role.OBSERVED, Role.STATE,

Role.OUTPUT

Type Documentation Annotation, Testing

Scope Field

Example  @Role(Role.PARAMETER)
 @In public double latitude;

This example tags 'latitude' as Parameter.

 @Role(Role.OUTPUT_FILE + Role.PARAMETER) 
 @In public File input;

Roles can be combined too. Now the 'input' field is a parameter and an output file.

1.14. @Unit

A @Unit annotation binds a physical unit to a component field that is tagged as @In or @Out. Units are usually
attached to scalars and arrays fields. This information allows the frameworks to perform unit checking/validation
and unit conversion. There are several open source unit conversion libraries available that could be used to perform
unit conversion. An example unit conversion implementation is given in Section ???.

Synopsis @Unit(<String>)

arg - the physical unit of the field

Type Documentation Annotation, execution support

Scope Field

Example  public class Calc {   

    @Unit("degree")  
    @In public double latitude; 
    ...
 }

.

1.15. @Bound

A @Bound defines a binding to another field. It allows to express dependencies between fields. An array field could
be bound to another field that holds the size for that particular array.

Synopsis @Bound(<String>)

arg - the name of the field that this field is bould to.

Type Documentation Annotation, execution support.
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Scope Field

Example  public class ET { 

    @Bound("nsim")         // 'jh_coeff' is bound to 'nsim'
    @In public double[] jh_coeff;
    ...
    @In public int nsim;    
    ...
 }

1.16. @Execute

The method that is tagged with the @Execute annotation provides the implementation logic of the component. In
this method the component Input is being transformed to output. The execution method can have any name, it has
to be non-static, public, void return type, no arguments.

This is required meta data for a component.

Synopsis @Execute

Type Execution Annotation

Scope Method

Example  public class Component {  
       
    @Execute                                 
    public void executemethod() {                
        // execute code here    
    }
 }

1.17. @Initialize

Within the @Initialize method the internal state of a component is initialized. For example opening a file for
reading, or a creating a data base connection would be something that should be done within @Initialize

Synopsis @Initialize

Type Execution Annotation

Scope Method

Example  public class Component {         

    @Initialize
    public void start() {                
       // initialization code     
    }
 }

Name the initialize method any name you want, but annotate it with @Initialize The initialize methods has to
be non-static, public, void, and has no arguments. This method gets called once after component instantiation
and before the first execution. This is optional meta data.

1.18. @Finalize

This method provides the notion of a final cleanup after model execution (e.g. Closing a DB connection). Usually
the @Finalize method and the @Initialize method are both present.

Synopsis @Finalize
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Type Execution Annotation

Scope Method

Example public class Component {    
     
    @Finalize
    public void cleanup() {                
        // execute code here    
    }
}

The @Finalize method gets called after the final @Execute and the termination of the model.

1.19. @DLL

The @DLL Annotation simplifies the integration of native Libraries written in C++, C, and FORTRAN. It takes an
argument that corresponds to the name of the DLL (Windows), Shared Object (Linux/Unix), or Library (OSX).

If for example the argument is

Synopsis @DLL(<String>)

arg - the core name of the DLL (without lib prefix in Linux, no file extension).

Type Interface Annotation

Scope Interface<T extends Library>

Example import oms3.annotation.*;

 @DLL("F90Dyn")
 interface F95Test extends com.sun.jna.Library {
    // java interface method to FORTRAN
    int foomult(int a, int b);
 } 

 // Bind 'F90Dyn.dll' to the interface 'F95Test'
 F95Test lib = Libraries.bindLibrary(F95Test.class);

Note: This annotation is supported by the

2. Meta Data Representation
There are various strategies for attaching meta data annotations to components.

2.1. Embedded Annotations

Embedded Annotations are the preferred method for annotating modeling components. They are placed directly
into the source code. Therefore it is easy to keep code and meta data in sync during development.

import oms3.annotations.*;

 public class Daylen {

    static final int[] DAYS = {
        15, 45, 74, 105, 135, 166, 196, 227, 258, 288, 319, 349
    };
     
    @Range(min=6, max=18)
    @Out public double daylen;
 
    @In public Calendar currentTime;
 
    @Role(“Parameter”)    
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    @Range(min=-90, max=90)
    @In public double latitude;
 
    @Execute 
    public void execute() {
        int month  = currentTime.get(Calendar.MONTH);
        double dayl = DAYS[month] - 80.;
        if (dayl < 0.0)
            dayl = 285. + DAYS[month];
        
        double decr = 23.45 * Math.sin(dayl/365.*6.2832)*0.017453;
        double alat = latitude*0.017453;
        double csh = (-0.02908 - Math.sin(decr) * Math.sin(alat))  
                         /(Math.cos(decr) * Math.cos(alat));
        daylen = 24.0 * (1.570796 - Math.atan(csh / 
                         Math.sqrt(1. - csh * csh))) / Math.PI;
    }
 }

2.2. Attached Annotations

The following Listing show a alternative implementation of the Daylen component. It was split into two parts, (i) a
pure computational component class Daylen.java and (ii) the component meta data class DaylenCompInfo.java
. Only the latter has meta data dependencies to OMS3.

DaylenCompInfo.java

  public abstract class DaylenCompInfo {

    @Range(min=6, max=18)
    @Out public double daylen;

    @In public Calendar currentTime;
    
    @Role(“Parameter”)  
    @Range(min=-90, max=90)
    @In public double latitude;
  
    @Execute 
    public abstract void execute();

 }

As a rule, an attached component meta data class has the same name like the component but ends with CompInfo.
This class has to be public and abstract. It duplicates all the relevant fields and methods that should be annotated
for OMS3. The methods should all be abstract. It is important to use the same spelling for fields and methods.

Daylen.java

 public class Daylen {

    static final int[] DAYS = {
        15, 45, 74, 105, 135, 166, 196, 227, 258, 288, 319, 349
    };

    public double daylen;
    public Calendar currentTime;
    public double latitude;

    public void execute() {
        int month  = currentTime.get(Calendar.MONTH);
        double dayl = DAYS[month] - 80.;
        if (dayl < 0.0)
            dayl = 285. + DAYS[month];
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        double decr = 23.45 * Math.sin(dayl/365.*6.2832)*0.017453;
        double alat = latitude*0.017453;
        double csh = (-0.02908 - Math.sin(decr) * Math.sin(alat))  
                         /(Math.cos(decr) * Math.cos(alat));
        daylen = 24.0 * (1.570796 - Math.atan(csh / 
                         Math.sqrt(1. - csh * csh))) / Math.PI;
    }
 }

There are pro and cons for using embedded and attached component meta data. External meta data enables clean
and neutral computational components parts with no framework dependency. However, two separate files have to
be managed and have to kept in sync while doing component development.

2.3. Attached XML

[tbd]
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Appendix C. Recommended Practices
This Chapter discusses general best practices with respect to model development. Those practices may or may
with respect to easy language interoperability, ...

1. FORTRAN Coding Conventions
This document addresses coding conventions for OMS components and scientific code written in Java and the
FORTRAN programming language.

The purpose of this document is to ensure that new FORTRAN code will be as portable and robust as possible,
as well as consistent throughout the system. It builds upon commonly shared experience to avoid error-prone
practices and gathers guidelines that are known to make codes more robust.

This document covers items in order of decreasing importance (see below), deemed to be important for any code.
It is recognized in the spirit of this standard that certain suggestions which make code easier to read for some
people (e.g. lining up attributes, or using all lower case or mixed case) are subjective and therefore should not have
the same weight as techniques and practices that are known to improve code quality. For this reason, the standards
within this document are divided into three components; Standards, Guidelines and Recommendations:

Required Aimed at ensuring portability, readability and robustness. Compliance with this category is
mandatory.

Recommended Good practices. Compliance with this category is strongly encouraged. The case for deviations
will need to be argued by the programmer.

Encouraged Compliance with this category is optional, but is encouraged for consistency purposes.

Depending on the projects, programmer may opt to adhere to all three levels or just the two first. All projects must
adhere at least to the mandatory standards.

1.1. General Good Practices

These usually help in the robustness of the code (by checking interface compatibility for example) and in the
readability, maintainability and portability. They are reminded here:

• Encapsulation: Use of modules for procedures, functions, data.

• Use Dynamic Memory allocation for optimal memory usage.

• Derived types or structures which generally lead to stable interfaces, optimal memory usage, compactness, etc.

• Optional and keyword arguments in using routines.

• Functions/subroutines/operators overloading capability.

• Intrinsic functions: bits, arrays manipulations, kinds definitions, etc.

1.2. Interoperability and Portability

Required

• Source code must conform to the ISO FORTRAN 95 standard.

• No use shall be made of compiler-dependent error specifier values (e.g. IOSTAT or STAT values).

• No compiler- or platform-dependent extensions shall be used.
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• Source code must compiled and run under gfortran that is part of the GNU Compiler Collection.

Recommended

• Note that STOP is a F90/95 standard. EXIT(N) is an extension and should be avoided. It is recognized that
STOP does not necessarily return an error code. If an error code must be passed to a script for instance, then
the extension EXIT could be used but within a central place, so that to limit its occurrences within the code
to a single place.

• Precision: Parameterizations should not rely on vendor-supplied flags to supply a default floating point precision
or integer size. The F90/95 KIND feature should be used instead.

• Do not use tab characters in the code to ensure it will look as intended when ported. They are not part of the
FORTRAN characters set.

Encouraged

• For applications requiring interaction with independently-developed frameworks, the use of KIND type for all
variables declaration is encouraged to facilitate the integration.

1.3. Readability

Required

• Use free format syntax

• Use consistent indentation across the code. Each level of indentation should use at least two spaces.

• Use modules to organize source code.

• FORTRAN keywords (e.g., DATA) shall not be used as variable names.

• Use meaningful, understandable names for variables and parameters. Recognized abbreviations are acceptable
as a means of preventing variable names getting too long.

• Each externally-called function, subroutine, should contain a header. The content and style of the header should
be consistent across the system, and should include the functionality of the function, as well as the description
of the arguments, the author(s) names. A header could be replaced by a limited number of descriptive comments
for small subroutines.

• Magic numbers should be avoided; physical constants (e.g., pi, gas constants) should never be hardwired into
the executable portion of a code; use PARAMETER statements instead.

• Hard-coded numbers should be avoided when passed through argument lists since a compiler flag, which defines
a default precision for constants, cannot be guaranteed.

Recommended

• Use construct names to name loops, to increase readability, especially in nested loops.

• Similarly, use construct names in subroutines, functions, main programs, modules, operator, interface, etc.

• Include comments to describe the input, output and local variables of all procedures. Grouping comments for
similar variables is acceptable when their names are explicit enough.

• Use comments as required to delineate significant functional sections of code.

• Do not use FORTRAN statements and intrinsic function names as symbolic names.

• Use named parameters instead of “magic numbers”; REAL, PARAMETER :: PI=3.14159, ONE=1.0
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• Do not use GOTO statements. These are hard to maintain and complicate understanding the code. If absolutely
necessary to use GOTO (if using other constructs complicates the code structure), thoroughly document the
use of the GOTO.

Encouraged

• When writing new code, adhere to the style standards within your own coding style. When modifying an old
code, adhere to the style of the existing code to keep consistency.

• Use the same indentation for comments as for the rest of the code.

• Functions, procedures, data that are naturally linked should be grouped in modules.

• Limit to 80 the number of characters per line (maximum allowed under ISO is 132)

• Use of operators <, >, <=, >=, ==, /= is encouraged (for readability) instead of .lt., .gt., .le., .ge., .eq., .ne.

• Modules should be named the same name as the files they reside in: To simplify the makefiles that compile
them. Consequently, multiple modules in a single file are to be avoided where possible.

• Use blanks to improve the appearance of the code, to separate syntactic elements (on either side of equal signs,
etc) in type declaration statements

• Always use the :: notation, even if there are no attributes.

• Line up vertically: attributes, variables, comments within the variables declaration section.

• Remove unused variables

• Remove code that was used for debugging once this is complete.

1.4. Robustness

Required

• Use Implicit NONE in all codes: main programs, modules, etc. To ensure correct size and type declarations
of variables/arrays.

• Use PRIVATE in modules before explicitly listing data, functions, procedures to be PUBLIC. This ensures
encapsulation of modules and avoids potential naming conflicts. Exception to previous statement is when a
module is entirely dedicated to PUBLIC data/functions (e.g. a module dedicated to constants).

• Initialize all variables. Do not assume machine default value assignments.

• Do not initialize variables of one type with values of another.

Recommended

• Do not use the operators == and /= with floating-point expressions as operands. Check instead the departure of
the difference from a pre-defined numerical accuracy threshold (e.g. epsilon comparison).

• In mixed mode expressions and assignments (where variables of different types are mixed), the type conversions
should be written explicitly (not assumed). Do not compare expressions of different types for instance. Explicitly
perform the type conversion first.

• No include files should be used. Use modules instead, with USE statements in calling programs.

• Structures (derived types) should be defined within their own module. Procedures, Functions to manipulate
these structures should also be defined within this module, to form an object-like entity.

• Procedures should be logically flat (should focus on a particular functionality, not several ones)
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• Module PUBLIC variables (global variables) should be used with care and mostly for static or infrequently
varying data.

Encouraged

• Use parentheses at all times to control evaluation order in expressions.

• Use of structures is encouraged for a more stable interface and a more compact design. Refer to structure contents
with the % sign (e.g. Absorbents%WaterVapor).

1.5. Arrays

Required

• Subscript expressions should be of type integer only.

• When arrays are passed as arguments, code should not assume any particular passing mechanism.

Recommended

• Use of arrays is encouraged as well as intrinsic functions to manipulate them.

• Use of assumed shapes is fine in passing vectors/arrays to functions/arrays.

Encouraged

• Declare DIMENSION for all non-scalars

1.6. Dynamic Memory Allocation / Pointers

Required

• Use of allocatable arrays is preferred to using pointers, when possible. To minimize risks of memory leaks and
heap fragmentation.

• Use of pointers is allowed when declaring an array in a subroutine and making it available to a calling program.

• Always initialize pointer variables in their declaration statement using the NULL() intrinsic. INTEGER, POINT-
ER :: x=> NULL()

• The preferable mechanism for dynamic memory allocation is automatic arrays, as opposed to ALLOCATABLE
or POINTER arrays for which memory must be explicitly allocated and deallocated; space allocated using
ALLOCATABLE or POINTER must be explicitly freed using the DEALLOCATE statement.

Recommended

• Always deallocate allocated pointers and arrays. This is especially important inside subroutines and inside loops.

• Always test the success of a dynamic memory allocation and deallocation - the ALLOCATE and DEALLO-
CATE statements have an optional argument to allow this.

• In a given program unit do not repeatedly ALLOCATE space, DEALLOCATE it and then ALLOCATE a larger
block of space - this will almost certainly generate large amounts of unusable memory.

Encouraged

• Use of dynamic memory allocation is encouraged. It makes code generic and avoids declaring with maximum
dimensions.

• For simplicity, use Automatic arrays in subroutines whenever possible, instead of allocatable arrays.
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1.7. Looping

Required

• Do not use GOTO to exit/cycle loops, use instead EXIT or CYCLE statements.

Recommended

• No numbered DO loops such as (DO 10 ...10 CONTINUE).

1.8. Functions/Procedures

Required

• The SAVE statement is discouraged; use module variables for state saving.

• Do not use an entry in a function subprogram.

• Functions must not have pointer results.

• The names of intrinsic functions (e.g., SUM) shall not be used for user-defined functions.

• Procedures that return a single value should be functions; note that single values could also be user-defined
types.

• All communication with the module should be through the argument list or it should access its module variables.

Recommended

• All dummy arguments, except pointers, should include the INTENT clause in their declaration

• Limit use of type specific intrinsic functions (e.g., AMAX, DMAX - use MAX in all cases).

• Avoid statically dimensioned array arguments in a function/subroutine.

• Check for invalid argument values.

Encouraged

• Error conditions. When an error condition occurs inside a function/procedure, a message describing what went
wrong should be printed. The name of the routine in which the error occurred must be included. It is acceptable
to terminate execution within a package, but the developer may instead wish to return an error flag through
the argument list.

• Functions/procedures that perform the same function but for different types/sizes of arguments, should be over-
loaded, to minimize duplication and ease the maintainability.

• When explicit interfaces are needed, use modules, or contain the subroutines in the calling programs (through
CONTAINS statement), for simplicity.

• Do not use external routines as these need interface blocks that would need to be updated each time the interface
of the external routine is changed.

1.9. I/O

Required

• I/O statements on external files should contain the status specifier parameters err=, end=, iostat=, as appropriate.

• All global variables, if present, should be set at the initialization stage.

Recommended
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• Avoid using NAMELIST I/O if possible.

• Use write rather than print statements for non-terminal I/O.

• Use Character parameters or explicit format specifiers inside the Read or Write statement. DO not use labeled
format statements (outdated).

1.10. FORTRAN Features that are obsolescent and/or discour-
aged

Required

• No Common blocks. Modules are a better way to declare/store static data, with the added ability to mix data of
various types, and to limit access to contained variables through use of the ONLY and PRIVATE clauses.

• No assigned and computed GO TOs - use the CASE construct instead

• No arithmetic IF statements - use the block IF construct instead

• Avoid DATA, ASSIGN Labeled DO BACKSPACE Blank COMMON, BLOCK DATA

• Use REAL instead of DOUBLE PRECISION

• Branch to END IF outside the block IF

• DO non-integer Control

• Hollerith Constants

• PAUSE

• multiple RETURN

• Alternate RETURN

Recommended

• Do not make use of the equivalence statement, especially for variables of different types. Use pointers or derived
types instead.

Encouraged

• No implicitly changing the shape of an array when passing it into a subroutine. Although actually forbidden
in the standard it was very common practice in FORTRAN 77 to pass 'n' dimensional arrays into a subroutine
where they would, say, be treated as a 1 dimensional array. This practice, though banned in FORTRAN 90, is
still possible possible with external routines for which no Interface block has been supplied. This only works
because of assumptions made about how the data is stored.

1.11. Source Files

Required

• Document the function interface: argument name, type, unit, description, constraint,defaults.

• The INCLUDE statement shall not be used; use the USE statement instead.

Recommended

• Try to limit source column length, including comments, to 80 columns (or follow language specific limits).

• A component should not exceed 300-500 effective lines of code, be efficient with your coding.
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• Use blank lines (or lines with a standard character in column 1) to separate statement blocks to improve code
readability.

• Apply consistent indentation method for code.

• Module/subprogram names shall be lower case; the name of a file containing a module/subprogram shall be the
module/subprogram name with the suffix *.f90."

Encouraged

• Clearly separate declaration of argument variables from declaration of local variables.

• Use descriptive and unique names for variables and subprograms (so as to improve the code readability and
facilitate global string search);

• try to limit name lengths to 12-15 characters.

• Indent continuation lines to ensure that, for example, parts of a multi-line equation line up in a readable manner.

• Start comment text with a standard character (e.g. !, C, etc.); if a stand-alone line then start comment character
in the first column.

1.12. General Coding Guidelines

• Reduce or eliminate global variable usage.

• Attempt to limit the number of arguments in argument list - long lists make it hard to reuse.

• Limit of only one return point per component.

• Use exceptions as error indicators if supported.

• Components should be specific to one and only one purpose.

• Components with side effects are not allowed (e.g. Don't mix I/O code with computational code).

• Program against a standard (e.g., ANSI C, C++, Java, FORTRAN 77/90/95) -

• Make sure your code compiles under different compilers and platforms.

• Use preprocessor directives for adaptation to different architectures/compilers/OS.

• Make I/O specific components separate from computational components.

• Avoid static allocation of data (compile time allocation).

• Be most specific with your data types.

• Avoid using custom data types for argument types.
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Appendix D. License
OMS3 is licensed under the Open Software License ("OSL") version 3.0:

1) Grant of Copyright License. Licensor grants You a worldwide, royalty-free, non-exclusive, sublicensable
license, for the duration of the copyright, to do the following:

a) to reproduce the Original Work in copies, either alone or as part of a collective work;

b) to translate, adapt, alter, transform, modify, or arrange the Original Work, thereby creating
derivative works ("Derivative Works") based upon the Original Work;

c) to distribute or communicate copies of the Original Work and Derivative Works to the pub-
lic, with the proviso that copies of Original Work or Derivative Works that You distribute or
communicate shall be licensed under this Open Software License;

d) to perform the Original Work publicly; and e) to display the Original Work publicly.

2) Grant of Patent License. Licensor grants You a worldwide, royalty-free, non-exclusive, sublicensable license,
under patent claims owned or controlled by the Licensor that are embodied in the Original Work as furnished by
the Licensor, for the duration of the patents, to make, use, sell, offer for sale, have made, and import the Original
Work and Derivative Works.

3) Grant of Source Code License. The term "Source Code" means the preferred form of the Original Work for
making modifications to it and all available documentation describing how to modify the Original Work. Licensor
agrees to provide a machine-readable copy of the Source Code of the Original Work along with each copy of
the Original Work that Licensor distributes. Licensor reserves the right to satisfy this obligation by placing a ma-
chine-readable copy of the Source Code in an information repository reasonably calculated to permit inexpensive
and convenient access by You for as long as Licensor continues to distribute the Original Work.

4) Exclusions From License Grant. Neither the names of Licensor, nor the names of any contributors to the
Original Work, nor any of their trademarks or service marks, may be used to endorse or promote products de-
rived from this Original Work without express prior permission of the Licensor. Except as expressly stated here-
in, nothing in this License grants any license to Licensor's trademarks, copyrights, patents, trade secrets or any
other intellectual property. No patent license is granted to make, use, sell, offer for sale, have made, or import
embodiments of any patent claims other than the licensed claims defined in Section 2. No license is granted to
the trademarks of Licensor even if such marks are included in the Original Work. Nothing in this License shall
be interpreted to prohibit Licensor from licensing under terms different from this License any Original Work that
Licensor otherwise would have a right to license.

5) External Deployment. The term "External Deployment" means the use, distribution, or communication of the
Original Work or Derivative Works in any way such that the Original Work or Derivative Works may be used by
anyone other than You, whether those works are distributed or communicated to those persons or made available
as an application intended for use over a network. As an express condition for the grants of license hereunder,
You must treat any External Deployment by You of the Original Work or a Derivative Work as a distribution
under section 1(c).

6) Attribution Rights. You must retain, in the Source Code of any Derivative Works that You create, all copyright,
patent, or trademark notices from the Source Code of the Original Work, as well as any notices of licensing and any
descriptive text identified therein as an "Attribution Notice." You must cause the Source Code for any Derivative
Works that You create to carry a prominent Attribution Notice reasonably calculated to inform recipients that You
have modified the Original Work.

7) Warranty of Provenance and Disclaimer of Warranty. Licensor warrants that the copyright in and to the
Original Work and the patent rights granted herein by Licensor are owned by the Licensor or are sublicensed to
You under the terms of this License with the permission of the contributor(s) of those copyrights and patent rights.
Except as expressly stated in the immediately preceding sentence, the Original Work is provided under this License
on an "AS IS" BASIS and WITHOUT WARRANTY, either express or implied, including, without limitation, the
warranties of non-infringement, merchantability or fitness for a particular purpose. THE ENTIRE RISK AS TO
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THE QUALITY OF THE ORIGINAL WORK IS WITH YOU. This DISCLAIMER OF WARRANTY constitutes
an essential part of this License. No license to the Original Work is granted by this License except under this
disclaimer.

8) Limitation of Liability. Under no circumstances and under no legal theory, whether in tort (including negli-
gence), contract, or otherwise, shall the Licensor be liable to anyone for any indirect, special, incidental, or con-
sequential damages of any character arising as a result of this License or the use of the Original Work including,
without limitation, damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and
all other commercial damages or losses. This limitation of liability shall not apply to the extent applicable law
prohibits such limitation.

9) Acceptance and Termination. If, at any time, You expressly assented to this License, that assent indicates
your clear and irrevocable acceptance of this License and all of its terms and conditions. If You distribute or
communicate copies of the Original Work or a Derivative Work, You must make a reasonable effort under the
circumstances to obtain the express assent of recipients to the terms of this License. This License conditions your
rights to undertake the activities listed in Section 1, including your right to create Derivative Works based upon
the Original Work, and doing so without honoring these terms and conditions is prohibited by copyright law and
international treaty. Nothing in this License is intended to affect copyright exceptions and limitations (including
"fair use" or "fair dealing"). This License shall terminate immediately and You may no longer exercise any of the
rights granted to You by this License upon your failure to honor the conditions in Section 1(c).

10) Termination for Patent Action. This License shall terminate automatically and You may no longer exercise
any of the rights granted to You by this License as of the date You commence an action, including a cross-claim or
counterclaim, against Licensor or any licensee alleging that the Original Work infringes a patent. This termination
provision shall not apply for an action alleging patent infringement by combinations of the Original Work with
other software or hardware.

11) Jurisdiction, Venue and Governing Law. Any action or suit relating to this License may be brought only in
the courts of a jurisdiction wherein the Licensor resides or in which Licensor conducts its primary business, and
under the laws of that jurisdiction excluding its conflict-of-law provisions. The application of the United Nations
Convention on Contracts for the International Sale of Goods is expressly excluded. Any use of the Original Work
outside the scope of this License or after its termination shall be subject to the requirements and penalties of
copyright or patent law in the appropriate jurisdiction. This section shall survive the termination of this License.

12) Attorneys' Fees. In any action to enforce the terms of this License or seeking damages relating thereto,
the prevailing party shall be entitled to recover its costs and expenses, including, without limitation, reasonable
attorneys' fees and costs incurred in connection with such action, including any appeal of such action. This section
shall survive the termination of this License.

13) Miscellaneous. If any provision of this License is held to be unenforceable, such provision shall be reformed
only to the extent necessary to make it enforceable.

14) Definition of "You" in This License. "You" throughout this License, whether in upper or lower case, means
an individual or a legal entity exercising rights under, and complying with all of the terms of, this License. For
legal entities, "You" includes any entity that controls, is controlled by, or is under common control with you. For
purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management
of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding
shares, or (iii) beneficial ownership of such entity.

15) Right to Use. You may use the Original Work in all ways not otherwise restricted or conditioned by this
License or by law, and Licensor promises not to interfere with or be responsible for such uses by You.

16) Modification of This License. This License is Copyright © 2005 Lawrence Rosen. Permission is granted
to copy, distribute, or communicate this License without modification. Nothing in this License permits You to
modify this License as applied to the Original Work or to Derivative Works. However, You may modify the text
of this License and copy, distribute or communicate your modified version (the "Modified License") and apply
it to other original works of authorship subject to the following conditions: (i) You may not indicate in any way
that your Modified License is the "Open Software License" or "OSL" and you may not use those names in the
name of your Modified License; (ii) You must replace the notice specified in the first paragraph above with the
notice "Licensed under <insert your license name here>" or with a notice of your own that is not confusingly
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similar to the notice in this License; and (iii) You may not claim that your original works are open source software
unless your Modified License has been approved by Open Source Initiative (OSI) and You comply with its license
review and certification process.
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