
Supporting Collaborative

Model and Data Service

Development and Deployment

with DevOps

Olaf David1, Mazdak Arabi1,

Jack Carlson1, Kyle Traff1, Wes Lloyd2,

Ken Rojas3

H41B-1327

1 Colorado State University, Fort Collins
2 University of Washington, Tacoma
3 USDA Natural Resources Conservation Service, Fort Collins

Abstract
Efficient deployment of modeling technology and data
management using a Service-oriented Architectures
SoA in a scientific research environment requires the
efficient management of rapid
development/deployment cycles. Changes of modeling
solutions are frequent and must be quickly made
available to the collaborating community.

DevOps provides best practices, tools, and
organizational structures to optimize the transition
from model service development to deployment by
minimizing the operational burden and turnaround
time for (model) developers. We have developed and
implemented a methodology by integrating a suite of
tools for application lifecycle management, version
control, continuous integration, container
management, and container scaling to enable model
and data service developers in various institutions to
collaboratively build, run, deploy, test, and scale
services within minutes. Our methodology automates
most of the workflow for service roll out and
deployment.

Clouds provide an excellent platform for service
deployment, however, they do not provide usually
workflow and comprehensive resource management.
Scientific computing in cloud environments typically
suffer from heavy virtualization overhead due to OS
replication on the VM. Leveraging experience
managing scientific service deployments on Eucalyptus
and Amazon we have developed a continuous
workflow for service deployment and delivery using
Kubernetes/Docker, Jenkins CI and Mercurial/Git.

We use the implemented workflow to develop, deploy
and test micro services developed using the Cloud
Services Integration Platform (CSIP). CSIP is a
RESTful/JSON based service infrastructure based on
the Object Modeling System, which was developed at
Colorado State University providing for collaborative
integration of environmental models into scalable
model and data services as a micro-services platform.

CSIP/DevOps make model service improvements
available in a short amount of time while engaging a
wider community of model service users in testing and
model evaluation while taking into account
deployment scalability, redundancy and reliability,
access security, and development efficiency.

Introduction
The Cloud Services Integration Platform (CSIP) developed over the last 5 years

at Colorado State University provides for collaborative integration of
environmental models into scalable model and data services as ‘micro-services’
platform with API and deployment infrastructure. CSIP, initially developed to
support USDA natural resource applications, has proven to be suitable for a wide
range of scientific applications spanning environmental modeling. To date, more
than 160 model and data services are available for applications in hydrology
(PRMS, Hydrotools, CFA, ESP), water and wind erosion prediction (WEPP, WEPS,
RUSLE2), soil quality trends (SCI, STIR), water quality analysis (SWAT-CP, WQM,
CFA, AgES-W), stream channel degradation assessment (SWAT-DEG), hydraulics
(cross-section), and grazing management (GRAS). In addition, supporting data
services include soil (SSURGO), ecological site (ESIS), climate (CLIGEN, WINDGEN),
land management and crop rotations (LMOD), and pesticides (WQM), developed
using this workflow automation and decentralized governance.

Adopting DevOps practices for model service development and deployment
enables a community to engage in service-oriented modeling and data
management. While extending its scope and visibility it became apparent
community integration and adequate work flow support through the full model
development and application cycle drove successful outcomes. DevOps provide
best practices, tools, and organizational structures to optimize the transition from
model service development to deployment by minimizing the (i) operational
burden and (ii) turnaround time for modelers. We have developed and
implemented a methodology to fully automate a suite of applications for
application lifecycle management, version control, continuous integration,
container management, and container scaling to enable model and data service
developers in various institutions to collaboratively build, run, deploy, test, and
scale services within minutes.

Conclusions
We have implemented more than 160 model and data services for applications in

hydrology (PRMS, Hydrotools, CFA, ESP), water and wind erosion prediction (WEPP, WEPS,
RUSLE2), soil quality trends (SCI, STIR), water quality analysis (SWAT-CP, WQM, CFA, AgES-
W), stream degradation assessment (SWAT-DEG), hydraulics (cross-section), and grazing
management (GRAS), and supporting data services (SSURGO, ESIS, CLIGEN, WINDGEN),
land management and crop rotations (LMOD), and pesticides (WQM), developed using
this workflow automation and decentralized governance.

Container-based deployment using Kubernetes, Mercurial, and Jenkins provides all
tools to allow for a continues delivery of scientific applications. Using the implemented
workflow, we were able to allow a developer driven deployment for service testing in
short amount of time while ensuring scalability. In addition we can track deployment
history, revisit deployment parameter by leveraging Jenkins and Kubernetes features.

The implemented development and deployment solution is actively being used in
several research projects.

Resources
- CSIP project: http://alm.engr.colostate.edu/cb/project/csip
- David, O., Lloyd, W., Rojas, K., Arabi, M., Geter, F., Ascough II, J., Green, T., Leavesley, G.
and J. Carlson, 2014, Model-as-a-Service (MaaS) using the Cloud Services Innovation
Platform (CSIP), In: Ames, D.P., Quinn, N.W.T., Rizzoli, A.E. (Eds.), Proceedings of the 7th
International Congress on Environmental Modelling and Software, June 15-19, San Diego,
California, USA. ISBN: 978-88-9035-744-2
- Garen, D. C., G. L. Johnson, and C. L. Hanson (1994). Mean areal precipitation for daily
hydrologic modeling in mountainous regions. Water Resources Bulletin, 30(3), 481-491.
- Kubernetes project: http://kubernetes.io
- eRAMS platform: http://erams.com

Workflow Implementation

Objectives
Our operational workflow enables decentralized builds and deployment of services:
• Support developers to easily deploy a new service to a platform for internal

testing and results evaluation.
• Track deployments in version history to capture provenance.
• Enable developers to remotely trigger service builds, deployments, and tests

using a common web user interface.
• Manage service configuration changes without interrupting service availability

while addressing failure through enabling roll backs to previous working
versions.

• Provide multiple event based methods to trigger services deployment in
response to version control actions, remote URL triggers, or direct UI triggers.

• Encapsulate management of software dependencies throughout micro services

deployment to ensure all components are available for proper service operation.

Methods and Approaches
We integrated the following tools to implement this workflow:
CSIP
• The Cloud Services Integration Platform is a cross-platform Model-as-A-Service

platform tailored for implementing and deploying environmental model and
data services. It is a Java-based framework.

Jenkins
• Jenkins is a cross-platform, continuous integration and delivery application helps

to automate the non-human part of the whole software development process,
with now common things like continuous integration, but by further
empowering teams to implement the technical part of a Continuous Delivery.

Codebeamer ALM
• Codebeamer is an Application Lifecycle Management Platform that integrates

tools for managing resources and tracking progress of the entire software
lifecycle.

Mercurial
• Mercurial is a distributed source control management tool. It efficiently handles

projects of any size and offers an easy and intuitive interface.
Kubernetes
• Kubernetes is an open source container cluster manager providing a platform for

automating deployment, scaling, and operations of application containers across
clusters of hosts. It integrates with Docker.

Application Example – Detrended Kriging Service
CSU is developing in cooperation with the NRCS National Water and Climate Center

the next generation water supply forecasting system (eWSF). This system is being used to
perform seasonal water availability forecasts to support water management decision in
agriculture. This project aims to increase the functionality and efficiency of the water
supply forecasting workflow deployed and operated by the NWCC. The system retrieves,
processes, and de-biases climate data input for the PRMS model for twice-monthly water
supply forecasts in the 600 forecast basins of the western United States. It analyzes and
displays output to forecast hydrologists and provides data feeds to public facing portals
and applications. It is implemented using the eRAMS geospatial platform and CSIP service
infrastructure.

eWSF utilizes a Detrended Kriging service, which is based on the DK program (Garen
et. al, 1994). The purpose of this program is to estimate spatial fields of precipitation,
temperature, and snow water equivalent by interpolating among point measurements
from standard surface stations. The program was written with daily time series data in
mind, but it can also be used to interpolate data at other temporal resolutions, and it can
be used for long-term averages.

The DK service uses climate station data/metadata and a DEM and HRU map as input
and produces a climate data set with daily values for each HRU. The eWSF service package
containing the DK service was automatically deployed on the Kubernetes container cluster
using 64 cores using the yaml script shown in Listing 1.

Results
We implemented the presented workflow at CSU and using it for multiple projects.
- The time from committing a source code change to have a service available in

multiple container replica set is less than 10 seconds on average
- The version control system and CI are tracking a deployment history, either triggered

by VCS commit hooks or CI builds.
- Service orchestrations can be adjusted by customizing the Kubernetes template.
- Creating a topology of services and taking them down without manually managing

Kubernetes ‘yaml’ files is efficient.
- Model service developers can individually build test and deploy at scale without

central governance.

Contact

Olaf David

odavid@colostate.edu

http://www.engr.colostate.edu/~odavid

apiVersion: v1
kind: Service
metadata:

name: pf8088-nwcc-csip-ewsf-session
namespace: csip
labels:

app: pf8088-nwcc-csip-ewsf-mongo
tier: backend

spec:
ports:

the port that this service should serve on
- port: 27017

targetPort: mongo-port
selector:

app: pf8088-nwcc-csip-ewsf-mongo

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

name: pf8088-nwcc-csip-ewsf-session
namespace: csip

spec:
this replicas value is default
modify it according to your case
#replicas: 1
template:

metadata:
labels:

app: pf8088-nwcc-csip-ewsf-mongo
spec:

containers:
- name: session-store

image: mongo:3.2 # or just image: mongo
resources:

requests:
cpu: 250m
memory: 256M

ports:
- name: mongo-port

containerPort: 27017

apiVersion: v1
kind: Service
metadata:

name: pf8088-nwcc-csip-ewsf
namespace: csip
labels:

app: pf8088-nwcc-csip-ewsf
tier: frontend
context: csip-ewsf
context_version: '0.1.28-2.1.150'
platform: nwcc
platform_port: '8088'

spec:
the port that this service should serve on
- port: 48088

targetPort: http-port
selector:

app: pf8088-nwcc-csip-ewsf

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

name: pf8088-nwcc-csip-ewsf
namespace: csip

spec:
template:

metadata:
labels:

app: pf8088-nwcc-csip-ewsf
spec:

containers:
- name: pf8088-nwcc-csip-ewsf-tomcat

image: omslab/csip-ewsf:0.1.28-2.1.150
livenessProbe:

httpGet:
path: /csip-ewsf
port: http-port

initialDelaySeconds: 20
timeoutSeconds: 5
periodSeconds: 30

resources:
requests:

cpu: '1'
memory: '512M'

env:
- name: GET_HOSTS_FROM

value: dns
- name: session_ip

value: pf8088-nwcc-csip-ewsf-session
- name: csip__session__mongodb__uri

value: 'mongodb://${session_ip}:27017/csip'
ports:
- name: http-port

containerPort: 8080

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:

name: pf8088-nwcc-csip-ewsf-autoscaler
namespace: csip

spec:
scaleTargetRef:

apiVersion: extensions/v1beta1
kind: Deployment
name: pf8088-nwcc-csip-ewsf

minReplicas: 4
maxReplicas: 12
targetCPUUtilizationPercentage: 70

Distributed Development Groups

commit/update

push/pull

Health check

Listing 1: kube.yaml

We setup a Kubernetes cluster on 16 core DELL servers with 128 GB RAM each. We
used the docker-multimode setup for master and worker nodes from
‘https://github.com/kubernetes/kube-deploy’. Worker nodes can be easily added and
removed. The Kubernetes dashboard allows monitoring of the overall health as well as
deployment, pods, replica set, and service configuration.

The kube.yaml file (Listing 1) is auto-generated by Jenkins using a python template
and environment variable injection. It populated the replica-sets, services, and
horizontal auto-scaling. This file can be obtained from the Jenkins workspace.

Jenkins setup for service build , deployment and
testing. It is enabled to allow for remotely

triggering builds and deployments

The CSIP Project Application Lifecycle
Management site to manage resources
such as Repositories, Tracker, Service
endpoint descriptions, Documentation,
etc.

The generated time series for tmin, tmax,
and precip can be visualized at the HRU
level. The geospatial map and the time

series plots are connected to a allow an
interactive exploration of DK results.

eWSF GIS user interface to manage
geospatial data such as HRU (Hydrological
Response Unit) maps. The HRU map can be
used to visualize the result of DK for
computing tmin, tmax, and precip for a
given HRU over a period of time using
boxplots.

Local and remote development
groups are implementing model and
data services for erosion estimation,
water quality and quantity, irrigation
indexes, grazing land management,
etc. We use Mercurial to manage
source code changes .

At CSU we run a application
lifecycle management system
(Codebeamer) to provide
complete development support.
All service repositories are
hosted here. Changelog triggers
are used capture VCS push
operations and trigger
subsequent a Jenkins build and
deployment.

Source code repository hosted on
Codebeamer ALM

https://alm.engr.colostate.edu/Jenkins/

Jenkins is enabled with remote
triggers for build/deployment.
The service gets built from
source, versioned, and burned
into a Docker Image.
A yaml file is generated for
Kubernetes deployment.

A Kubernetes deployment job is
configured in Jenkins with build
parameter to control the
kube.yaml file creation with
parameter for CPU, memory,
container scaling ranges, image
version and deployment
operation .

Deployment history is kept in
Jenkins, capturing the service

context version and the
deployment operation in the

build history. Failed deployments
can be rolled back to a working

setup.

Min/max
of instances

for auto-scaling

Container
linkages

DockerHub
Image name/tag

Resource
constraints

CSIP Service
Definition

Service –
Deployment

Linkage

Mongo Session
Store Deployment

Mongo Session
Store Service

Service
Auto-Scaler

https://alm.engr.colostate.edu/cb/project/csip

mailto:odavid@colostate.edu

