
Supporting Collaborative
Model and Data Service
Development and Deployment
with DevOps

Olaf David1, Mazdak Arabi1,
Jack Carlson1, Kyle Traff1, Wes Lloyd2,
Ken Rojas3

H41B-1327

1 Colorado State University, Fort Collins
2 University of Washington, Tacoma
3 USDA Natural Resources Conservation Service, Fort Collins

Abstract
Efficient	deployment	of	modeling	technology	and	data	
management	using	a	Service-oriented	Architectures	
SoA in	a	scientific	research	environment	requires	the		
efficient	management	of	rapid	
development/deployment	cycles.	Changes	of	modeling	
solutions	are	frequent	and	must	be	quickly	made	
available	to	the	collaborating	community.

DevOps	provides	best	practices,	tools,	and	
organizational	structures	to	optimize	the	transition	
from	model	service	development	to	deployment	by	
minimizing	the	 operational	burden	and	 turnaround	
time	for	(model)	developers.	We	have	developed	and	
implemented	a	methodology	by	integrating	a	suite	of	
tools	for	application	lifecycle	management,	version	
control,	continuous	integration,	container	
management,	and	container	scaling	to	enable	model	
and	data	service	developers	in	various	institutions	to	
collaboratively	build,	run,	deploy,	test,	and	scale	
services	within	minutes.	Our	methodology	automates	
most	of	the	workflow	for	service	roll	out	and	
deployment.	

Clouds	provide	an	excellent	platform	for	service	
deployment,	however,	they	usually	do	not	provide	
workflow	and	comprehensive	resource	management.	
Scientific	computing	in	cloud	environments	typically	
suffer	from	heavy	virtualization	overhead	due	to	OS	
replication	on	the	VM. Leveraging	experience	
managing	scientific	service	deployments	on	Eucalyptus	
and	Amazon	we	have	developed	a	continuous	
workflow	for	service	deployment	and	delivery	using	
Kubernetes/Docker,	Jenkins	CI	and	Mercurial/Git.	

We	use	the	implemented	workflow	to	develop,	deploy	
and	test	micro	services	developed	using	the	Cloud	
Services	Integration	Platform	(CSIP).	CSIP	is	a	
RESTful/JSON	based	service	infrastructure	based	on	
the	Object	Modeling	System,	which	was		developed	at	
Colorado	State	University	providing	for	collaborative	
integration	of	environmental	models	into	scalable	
model	and	data	services	as	a	micro-services	platform.	

CSIP/DevOps	make	model	service	improvements	
available	in	a	short	amount	of	time	while	engaging	a	
wider	community	of	model	service	users	in	testing	and	
model	evaluation	while	taking	into	account	
deployment	scalability,	redundancy	and	reliability,	
access	security,	and	development	efficiency.

Introduction
The	Cloud	Services	Integration	Platform	(CSIP)	developed	over	the	last	5	years	

at	Colorado	State	University	provides	for	collaborative	integration	of	
environmental	models	into	scalable	model	and	data	services	as	‘micro-services’	
platform	with	API	and	deployment	infrastructure.	CSIP,	initially	developed	to	
support	USDA	natural	resource	applications,	has	proven	to	be	suitable	for	a	wide	
range	of	scientific	applications	spanning	environmental	modeling.	To	date,	more	
than	160	model	and	data	services	are	available	for	applications	in	hydrology	
(PRMS,	Hydrotools,	CFA,	ESP),	water	and	wind	erosion	prediction	(WEPP,	WEPS,	
RUSLE2),	soil	quality	trends	(SCI,	STIR),	water	quality	analysis	(SWAT-CP,	WQM,	
CFA,	AgES-W),	stream	channel	degradation	assessment	(SWAT-DEG),		hydraulics	
(cross-section),	and	grazing	management	(GRAS).	In	addition,	supporting	data	
services	include	soil	(SSURGO),	ecological	site	(ESIS),	climate	(CLIGEN,	WINDGEN),	
land	management	and	crop	rotations	(LMOD),	and	pesticides	(WQM),	developed	
using	this	workflow	automation	and	decentralized	governance.

Adopting	DevOps	practices	for	model	service	development	and	deployment	
enables	a	community	to	engage	in	service-oriented	modeling	and	data	
management.	While	extending	its	scope	and	visibility	it	became	apparent	
community	integration	and	adequate	work	flow	support	through	the	full	model	
development	and	application	cycle	drove	successful	outcomes.	DevOps	provide	
best	practices,	tools,	and	organizational	structures	to	optimize	the	transition	from	
model	service	development	to	deployment	by	minimizing	the	(i)	operational	
burden	and	(ii)	turnaround	time	for	modelers.	We	have	developed	and	
implemented	a	methodology	to	fully	automate	a	suite	of	applications	for	
application	lifecycle	management,	version	control,	continuous	integration,	
container	management,	and	container	scaling	to	enable	model	and	data	service	
developers	in	various	institutions	to	collaboratively	build,	run,	deploy,	test,	and	
scale	services	within	minutes.

Conclusions
We	have	implemented	more	than	160	model	and	data	services	for	applications	in	

hydrology	(PRMS,	Hydrotools,	CFA,	ESP),	water	and	wind	erosion	prediction	(WEPP,	WEPS,	
RUSLE2),	soil	quality	trends	(SCI,	STIR),	water	quality	analysis	(SWAT-CP,	WQM,	CFA,	AgES-
W),	stream	degradation	assessment	(SWAT-DEG),		hydraulics	(cross-section),	and	grazing	
management	(GRAS),	and	supporting	data	services	(SSURGO,	ESIS,	CLIGEN,	WINDGEN),	
land	management	and	crop	rotations	(LMOD),	and	pesticides	(WQM),	developed	using	
this	workflow	automation	and	decentralized	governance.

Container-based	deployment	using	Kubernetes,	Mercurial,	and	Jenkins	provides	all	
tools	to	allow	for	a	continues	delivery	of	scientific	applications.	Using	the	implemented	
workflow,	we	were	able	to	allow	a	developer	driven	deployment	for	service	testing	in	
short	amount	of	time	while	ensuring	scalability.	In	addition	we	can	track	deployment	
history,	revisit	deployment	parameter	by	leveraging	Jenkins	and	Kubernetes	features.

The	implemented	development	and	deployment	solution	is	actively	being	used	in	
several	research	projects.

Resources
- CSIP	project:	http://alm.engr.colostate.edu/cb/project/csip
- David,	O.,	Lloyd,	W.,	Rojas,	K.,	Arabi,	M.,	Geter,	F.,	Ascough II,	J.,	Green,	T.,	Leavesley,	G.	
and	J.	Carlson,	2014,	Model-as-a-Service	(MaaS)	using	the	Cloud	Services	Innovation	
Platform	(CSIP),	In:	Ames,	D.P.,	Quinn,	N.W.T.,	Rizzoli,	A.E.	(Eds.),	Proceedings	of	the	7th	
International	Congress	on	Environmental	Modelling	and	Software,	June	15-19,	San	Diego,	
California,	USA.	ISBN:	978-88-9035-744-2
- Garen,	D.	C.,	G.	L.	Johnson,	and	C.	L.	Hanson	(1994).		Mean	areal	precipitation	for	daily	
hydrologic	modeling	in	mountainous	regions.		Water	Resources	Bulletin,	30(3),	481-491.
- Kubernetes	project:	http://kubernetes.io
- eRAMS platform:	http://erams.com

Workflow Implementation

Objectives
Our	operational	workflow	enables	decentralized	builds	and	deployment	of	services:
• Support	developers	to	easily	deploy	a	new	service	to	a	platform	for	internal	

testing	and	results	evaluation.
• Track	deployments	in	version	history	to	capture	provenance.
• Enable	developers	to	remotely	trigger	service	builds,	deployments,	and	tests	

using	a	common	web	user	interface.
• Manage	service	configuration	changes	without	interrupting	service	availability	

while	addressing	failure	through	enabling	roll	backs	to	previous	working		
versions.

• Provide	multiple	event	based	methods	to	trigger	services	deployment	in	
response	to	version	control	actions,	remote	URL	triggers,	or	direct	UI	triggers.		

• Encapsulate	management	of	software	dependencies	throughout	micro	services	
deployment	to	ensure	all	components	are	available	for	proper	service	operation.

Methods and Approaches
We	integrated	the	following	tools		to	implement	this	workflow:
CSIP
• The	Cloud	Services	Integration	Platform	is	a	cross-platform	Model-as-A-Service	

platform	tailored	for	implementing	and	deploying	environmental	model	and	
data	services.	It	is	a	Java-based	framework.	

Jenkins
• Jenkins	is	a	cross-platform,	continuous	integration	and	delivery	application	helps	

to	automate	the	non-human	part	of	the	whole	software	development	process,	
with	now	common	things	like	continuous	integration,	but	by	further	
empowering	teams	to	implement	the	technical	part	of	a	Continuous	Delivery.	

Mercurial	
• Mercurial	is	a	distributed	source	control	management	tool.	It	efficiently	handles	

projects	of	any	size	and	offers	an	easy	and	intuitive	interface.
Kubernetes
• Kubernetes	is	an	open	source	container	cluster	manager	providing	a	platform	for	

automating	deployment,	scaling,	and	operations	of	application	containers	across	
clusters	of	hosts.	It	integrates	with	Docker.

Application Example – Detrended Kriging Service
CSU	is	developing	in	cooperation	with	the	NRCS	National	Water	and	Climate	Center	

the	next	generation	water	supply	forecasting	system	(eWSF).	This	system	is	being	used	to	
perform	seasonal	water	availability	forecasts	to	support	water	management	decision		in	
agriculture.	This	project	aims	to	increase	the	functionality	and	efficiency	of	the	water	
supply	forecasting	workflow	deployed	and	operated	by	the	NWCC.	The	system	retrieves,	
processes,	and	de-biases	climate	data	input	for	the	PRMS	model	for	twice-monthly	water	
supply	forecasts	in	the	600	forecast	basins	of	the	western	United	States.	It	analyzes	and	
displays	output	to	forecast	hydrologists	and	provides	data	feeds	to	public	facing	portals	
and	applications.	It	is	implemented	using	the	eRAMS geospatial	platform	and	CSIP	service	
infrastructure.

eWSF utilizes	a	Detrended Kriging service,	which	is	based	on	the	DK	program	(Garen
et.	al,	1994).	The	purpose	of	this	program	is	to	estimate	spatial	fields	of	precipitation,	
temperature,	and	snow	water	equivalent	by	interpolating	among	point	measurements	
from	standard	surface	stations.		The	program	was	written	with	daily	time	series	data	in	
mind,	but	it	can	also	be	used	to	interpolate	data	at	other	temporal	resolutions,	and	it	can	
be	used	for	long-term	averages.

The	DK	service	uses	climate	station	data/metadata	and	a	DEM	and	HRU	map	as	input	
and	produces	a	climate	data	set	with	daily	values	for	each	HRU.	The	eWSF service	package	
containing	the	DK	service	was	automatically	deployed	on	the	Kubernetes	container	cluster	
using	64	cores	using	the	yaml script	shown	in	Listing	1.

Results
We	implemented	the	presented	workflow	at	CSU	and	using	it	for	multiple	projects.	
- The	time	from	committing		a	source	code	change	to	have	a	service	available	in	

multiple	container	replica	set	is	less	than	10	seconds	on	average
- The	version	control	system	and	CI	are	tracking	a	deployment	history,	either	triggered	

by	VCS	commit	hooks	or	CI	builds.	
- Service	orchestrations	can	be	adjusted	by	customizing	the	Kubernetes	template.	
- Creating	a	topology	of	services	and	taking	them	down	without	manually	managing	

Kubernetes	‘yaml’	files	is	efficient.
- Model	service	developers	can	individually	build	test	and	deploy	at	scale	without	

central	governance.

Contact

Olaf David
odavid@colostate.edu
http://www.engr.colostate.edu/~odavid

apiVersion: v1
kind: Service
metadata:

name: nwcc-csip-ewsf-session
namespace: csip
labels:

app: mongo
tier: backend
role: session-store

spec:
ports:

the port that this service should serve on
- port: 27017

targetPort: 27017
selector:

app: mongo
tier: backend
role: session-store

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

name: nwcc-csip-ewsf-session
namespace: csip

spec:
this replicas value is default
modify it according to your case
replicas: 1
template:

metadata:
labels:

app: mongo
role: session-store
tier: backend

spec:
containers:
- name: session-store

image: mongo:latest # or just image: mongo
resources:

requests:
cpu: 100m
memory: 500Mi

ports:
- containerPort: 27017

apiVersion: v1
kind: Service
metadata:

name: nwcc-csip-ewsf
namespace: csip
labels:

app: tc
tier: nwcc-csip-ewsf

spec:
ports:

the port that this service should serve on
- port: 8088

targetPort: 8080
selector:

app: tc
tier: nwcc-csip-ewsf

apiVersion: v1
kind: ReplicationController
metadata:

name: nwcc-csip-ewsf
namespace: csip

spec:
this replicas value is default
modify it according to your case
replicas: 5
template:

metadata:
labels:

app: tc
tier: nwcc-csip-ewsf

spec:
containers:
- name: nwcc-csip-ewsf-tomcat

image: omslab/csip-ewsf:0.1.28-2.1.140
resources:

requests:
cpu: '100m'
memory: '128M'

env:
- name: GET_HOSTS_FROM

value: dns
- name: session_ip

value: nwcc-csip-ewsf-session
ports:
- containerPort: 8080

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:

name: nwcc-csip-ewsf-autoscaler
namespace: csip

spec:
scaleTargetRef:

apiVersion: v1
kind: ReplicationController
name: nwcc-csip-ewsf

minReplicas: 5
maxReplicas: 16
targetCPUUtilizationPercentage: 70

Distributed	Development	Groups

commit/update

push/pull

Initial	number	of		
Instances

Listing	1:	kube.yaml

We	setup	a	Kubernetes	Cluster	on	multiple	16	core	DELL	server	with	72	GB	RAM	
each.		We	used	the	docker-multimode	setup	for	master	and	worker	nodes	from		
‘https://github.com/kubernetes/kube-deploy’.		Worker	nodes	can	be	easily	added	
and	removed.	The	Kubernetes	dashboard	allows	monitoring	of	the	overall	health as	
well	as	deployment,		pods,	replica	set,	and	service	configuration.

The	kube.yaml file	(Listing	1)	is	auto-generated	by	Jenkins	using	a	python	template	
and	environmental	variable	injection.	It	populated	the	replica-sets,	services,	and	
horizontal	auto-scaling.		This	file	can	be	obtained	from	the	Jenkins	workspace.

Jenkins	setup	for	service	build	,	deployment	
and	testing.	It	is	enabled	to	allow	for	remotely	

triggering	builds	and	deployments

The	CSIP	Project	Application	Lifecycle	
Management	site	to	manage	resources	
such	as	Repositories,	Tracker,	Service	
endpoint	descriptions,	Documentation,	
etc.

The	generated	time	series	for	tmin,	tmax,	
and	precip can	be	visualized	at	the	HRU	
level.	The	geospatial	map	and	the	time	
series	plots	are	connected	to	a	allow	an	

interactive	exploration	of	DK	results.	

eWSF GIS	user	interface	to	manage	
geospatial	data	such	as	HRU	
(Hydrological	Response	Unit)	maps.	The	
HRU	map	can	be	used	to	visualize	the	
result	of	DK	for	computing	tmin,	tmax,	
and	precip for	a	given	HRU	over	a	period	
of	time	using	boxplots.

Local	and	remote	development	
groups	are	implementing	model	and	
data	services	for	erosion	estimation,	
water	quality	and	quantity,	
irrigation	indexes,	grazing	land	
management,	etc.	They	use		
Mercurial	to	manage	source	code	
and	push	code	changes	

At	CSU	we	run	a	application	
lifecycle	management	system	
(Codebeamer)	to	provide	
complete	development	support.

All	service	repositories	are	
hosted	here.	Changelog	triggers	
are	used	capture	VCS	push	
operations	and	trigger	
subsequent	a	Jenkins	build	and	
deployment.		

https://alm.engr.colostate.edu/cb/project/csip

https://alm.engr.colostate.edu/Jenkins/

Jenkins	is	enabled	with	remote		
triggers		for	build/deployment.	
The	service	gets	built	from	
source,	versioned,	and	burned	
into	a	Docker	Image.
A	yaml file	is	generated		for	
Kubernetes	deployment.

A	Kubernetes	deployment	job	is	
Configured	in	Jenkins	with	build	
parameter	to	control	the	
kube.yaml file	creation	with	
parameter	for	CPU,	memory,	
container	scaling	ranges,	image	
version	and	deployment	
operation	.

Deployment	history	is	kept	in	
Jenkins,	capturing	the	service	

context		version	and	the	
deployment	operation	in	the	

build	history.	Failed	
deployments	can	be	rolled	back	

to	a	working	setup.

Range	of		
Instances

Resources	to	
allocate

Image	name/tag

