Environmental Modelling & Software 26 (2011) 1240—1250

Environmental Modelling & Software

journal homepage: www.elsevier.com/locate/envsoft

Contents lists available at ScienceDirect Emirommenal
Model

Environmental modeling framework invasiveness: Analysis and implications

W. Lloyd #P*, 0. David P, J.C. Ascough II¢, KW. Rojas 9, J.R. Carlson 9, G.H. Leavesley?, P. Krause ¢,

T.R. Green €, L.R. Ahuja‘

2 Dept. of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA
b Dept. of Computer Science, Colorado State University, Fort Collins, CO 80523, USA

€ USDA-ARS, ASRU, 2150 Centre Ave., Bldg. D, Suite 200, Fort Collins, CO 80526, USA

4 USDA-NRCS, 2150 Centre Ave., Bldg. A, Fort Collins, CO 80526, USA

€ Department of Geography, Friedrich-Schiller-Universitiit Jena, Jena, Germany

ARTICLE INFO

Article history:

Received 4 May 2010
Received in revised form

24 February 2011

Accepted 28 March 2011
Available online 12 May 2011

Keywords:

Component-based modeling
Environmental modeling frameworks
Invasiveness

Frameworks

Software metrics

1. Introduction

ABSTRACT

Environmental modeling frameworks support scientific model development by providing model
developers with domain specific software libraries which are used to aid model implementation. This
paper presents an investigation on the framework invasiveness of environmental modeling frameworks.
Invasiveness, similar to object-oriented coupling, is defined as the quantity of dependencies between
model code and a modeling framework. We investigated relationships between invasiveness and the
quality of modeling code, and also the utility of using a lightweight framework design approach in an
environmental modeling framework. Five metrics to measure framework invasiveness were proposed
and applied to measure dependencies between model and framework code of several implementations
of Thornthwaite and the Precipitation-Runoff Modeling System (PRMS), two well-known hydrological
models. Framework invasiveness measures were compared with existing common software metrics
including size (lines of code), cyclomatic complexity, and object-oriented coupling. Models with lower
framework invasiveness tended to be smaller, less complex, and have less coupling. In addition, the
lightweight framework implementations of the Thornthwaite and PRMS models were less invasive than
the traditional framework model implementations. Our results show that model implementations with
higher degrees of framework invasiveness also had structural characteristics which previously have been
shown to predict poor maintainability, a non-functional code quality attribute of concern. We conclude
that using a framework with a lightweight framework design shows promise in helping to improve the
quality of model code and that the lightweight framework design approach merits further attention by
environmental modeling framework developers.

© 2011 Elsevier Ltd. All rights reserved.

change and the modeling code must be adaptable to run under new
environments. Furthermore, researchers collaborate within and

For an environmental model, the software life-cycle begins
when a model developer initially writes scientific modeling code to
represent a particular natural system or phenomena. The software
life-cycle ends when the modeling code is retired and replaced by
a new modeling paradigm or approach. Throughout the software
life-cycle of a scientific model, source code may need to be modified
to reflect improvements in understanding made by the scientific
community. Additionally, the languages, libraries, and modeling
frameworks used by research organizations may periodically

* Corresponding author. Present address: USDA-ARS, ASRU, 2150 Centre Ave.,
Bldg. D, Suite 200, Fort Collins, CO 80526 USA. Tel.: +1 970 492 7311; fax: +1 970
492 7310.

E-mail address: wlloyd@acm.org (W. Lloyd).

1364-8152/$ — see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.envsoft.2011.03.011

across organizations in an effort to improve and share scientific
knowledge. Shared model code must be reusable by organizations
which may not have access to the same computing environments,
libraries, frameworks, languages, and software development
expertise. Because of the challenges encountered in developing and
supporting scientific models throughout their software life-cycle,
numerous software frameworks have been developed.

A software framework is a software library which provides
domain specific functionality in a reusable form (Gamma et al,,
1995). Software frameworks help define the software architecture
of applications by: 1) providing a reusable design which guides
software developers in partitioning functionality into units,
commonly referred to as components, classes, or modules; and 2)
specifying how units communicate and manage the thread of
execution. Frameworks enable design reuse and can be classified as

mailto:wlloyd@acm.org
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2011.03.011
http://dx.doi.org/10.1016/j.envsoft.2011.03.011
http://dx.doi.org/10.1016/j.envsoft.2011.03.011

W. Lloyd et al. / Environmental Modelling & Software 26 (2011) 1240—1250 1241

either non-domain specific or domain specific. Non-domain
specific frameworks provide support for general software archi-
tecture elements such as database access, enterprise services,
graphical interface design, and transaction management. Domain
specific frameworks provide reusable design and functionality for
specific problem domains such as industrial control systems,
networking/telecommunications, inventory tracking, and environ-
mental modeling frameworks, which are the focus of this study.

Environmental modeling frameworks support model develop-
ment by providing libraries of core environmental modeling mod-
ules or components which support: component interaction and
communication, spatial-temporal stepping and iteration, up/down-
scaling of spatial data, multi-threading/multiprocessor support, and
cross language interoperability, as well as reusable tools for data
analysis and visualization. Environmental modeling frameworks also
provide structure for models by supporting the disaggregation of
modeling functions into components, classes, or modules. In this
paper, we refer to functional units of model code as components.
Components, once implemented in a particular framework, are able
to be reused in other models coded to the same framework with little
migration effort. One advantage of using a common environmental
modeling framework is that pre-existing modules or components
may exist in a library which can help facilitate model development
(Voinov et al., 2004; Argent et al., 2006).

Avariety of environmental modeling frameworks exist and have
been under development using both procedural and object-
oriented programming languages for more than a decade,
including early frameworks such as the Interactive Component
Modelling System (ICMS) (Rizzoli et al,, 1998; Reed et al., 1999;
Argent, 2005), Tarsier (Watson and Rahman, 2004), the Spatial
Modelling Environment (SME) (Maxwell, 1999; Voinov et al., 1999),
the Modular Modeling system (MMS) (Leavesley et al., 2002, 2006)
and TIME (Rahman et al., 2003, 2004). The Earth System Modeling
Framework (ESMF, Collins et al., 2005) is an example of an envi-
ronmental modeling framework implemented using procedural
languages. Object-oriented programming became popular in the
late 1990s and early 2000s which led to innovations in framework
design. Newer environmental modeling frameworks have typically
been implemented in object-oriented languages such as C++, C#,
or Java and take advantage of object-oriented programming prin-
ciples. These frameworks began to be known as component-based
frameworks by offering libraries of “pluggable” modeling compo-
nents. With component-based frameworks, various aspects of
model implementation can be quickly changed, leading to easier
model refinement and expansion. Among environmental modeling
frameworks, there does not appear to be a clear distinction
between object-oriented frameworks and component-based
frameworks. Nearly all of the environmental modeling frame-
works developed with object-oriented technologies appear to
support component-based software development by offering the
capability of having pluggable components or classes which can
readily be substituted. This research investigation primarily utilizes
component-based frameworks including the Object Modeling
System (OMS, 2010) 2.2 and 3.0 (David et al.,, 2002, 2010), the
Common Component Architecture (CCA) 0.6.6 (Armstrong et al.,
1999), and the Open Modeling Interface (OpenMI) 1.4 (Blind and
Gregersen, 2005). Jagers (2010) presented a functional compar-
ison of modeling frameworks with the objective of qualitatively
identifying framework similarities and differences.

Donatelli and Rizzoli (2008) highlighted modeling component
dependence on modeling frameworks. They suggested that
modeling components should be developed with a generic inter-
face (i.e., not framework specific) to enhance reuse opportunities
and make unit testing easier to accomplish. Practical experience in
using environmental modeling frameworks has shown that model

applications heavily dependent on a framework are hard to reuse,
maintain, and repurpose outside of the framework context. In this
paper, we define the degree of dependency between an environ-
mental modeling framework and model code as “framework
invasiveness.” This is the degree to which model code is coupled to
the underlying framework. Framework to modeling code inva-
siveness occurs due to the following:

e Use of a framework Application Programming Interface (API)
consisting of data types and methods/functions with which
developers interface to harness framework functionality;

e Use of framework specific data structures (e.g., classes, types,
constants);

o Implementation of framework interfaces and extension of
framework classes;

e Boilerplate code (e.g., “non-science” code that is required so
that a model can run under a specific environmental modeling
framework);

e Framework requirements including language, platform, and
libraries; and

¢ Organizational investment (e.g., training, financial, development).

One goal of this research is to explore relationships between
environmental model code quality and the degree of invasiveness
between model code and environmental modeling frameworks.
Framework to application invasiveness is a type of code coupling.
Object-oriented coupling (i.e., coupling between classes in an
object-oriented program) has been shown to correlate inversely
with software fault proneness where fault proneness is the likeli-
hood of a mistake in the code (Basil et al., 1996; Briand et al., 1999,
2000). Mistakes in model code negatively impact the functional
correctness of the code, thereby reducing the functional aspects of
code quality. There are other important dimensions to model code
quality, such as maintainability and portability, which are referred to
as non-functional quality attributes. For this study, we are primarily
interested in understanding the impact of framework invasiveness
on non-functional quality attributes of the model code. We are not
assessing how frameworks specifically impact the functional accu-
racy of models as this largely depends on the developer imple-
menting scientific algorithms properly. Previous research has shown
that both code size and coupling can be used to predict code main-
tainability (Li and Henry, 1993; Dagpinar and Jahnke, 2003; Anda,
2007). This study focuses on quantifying the code invasiveness
incurred by using environmental modeling frameworks because we
believe this may be suggestive of the non-functional quality of
model code. The impact of invasiveness can be considered as the
“overhead” imposed by using a particular framework for a specific
modeling problem. For the remainder of this paper, when we refer to
model code quality we are referring to non-functional quality
attributes and not functional correctness of the model. Ultimately,
we are interested in understanding how framework invasiveness
impacts non-functional code quality attributes such as:

e Maintainability - the ease of maintaining program code for bug
fixes, feature enhancements, and upgrading to new framework
versions (Dig and Johnson, 2006). Framework dependencies
may complicate bug fixes and feature enhancements by
increasing the effort required to understand and make appli-
cation changes. Framework version upgrades can be complex if
substantial changes occur to the framework which prevent
backward compatibility. In some cases, API changes between
framework versions creates a substantial barrier for upgrading
existing code bases.

Portability/Reusability - the ease of porting application code for
use outside the framework or for use in other frameworks.

1242 W. Lloyd et al. / Environmental Modelling & Software 26 (2011) 1240—1250

Dependencies from using framework APIs clutter code with
framework specific constructs which must be adapted in order
to reuse code outside the original framework. Porting code may
involve adapting to another framework, or to run standalone
outside a framework. Porting may also involve adapting code
from one language, such as FORTRAN, to another language,
such as Java.

e Understandability - the ability for developers new to the code
to understand the implementation. Code with a high degree of
framework dependencies may be cluttered, potentially making
the modeling logic harder to identify and comprehend.
Understandability is a factor which impacts maintainability,
portability, and reusability.

A second goal of this research is to explore the utility of
a lightweight framework design approach for use in scientific and
environmental modeling frameworks. Modeling frameworks can
be classified as traditional or lightweight based on various design
characteristics (Richardson, 2006a). General characteristics of these
types of frameworks are described in Table 1. The primary differ-
ence between traditional and lightweight frameworks is how they
present functionality to the developer. Traditional frameworks, also
known as object-oriented frameworks (e.g., Java’s Swing Applica-
tion Framework for GUI development), provide developers with an
API that is often large, and developers typically spend considerable
time becoming familiar with framework APIs before writing model
code. Lightweight frameworks aim to reduce dependencies
between business/model code and framework code by offering
alternative ways to harness framework functionality other than
through the use of a large programming API.

The lightweight framework design approach is a new approach
to framework design that originated from various web application
and enterprise frameworks (Richardson, 2006b). Our research aims
to investigate the utility of harnessing this approach for scientific
and environmental modeling frameworks. A variety of techniques
are used including programming annotations that capture meta-
data to identify specific points in the model code where framework
functionality should be integrated, and also through the use of
external XML files. Wherever possible, “convention over configu-
ration” is favored such that system defaults are assumed and
developers are only required to specify unconventional details in
model code. Non-default behavior may include, for example,
unique component data input/output requirements, pre-conditions
and post-conditions. Framework-specific data types that override
system types are avoided in lightweight framework designs.

The use of inversion of control principles (Fowler, 2004) is the
fundamental defining difference between traditional frameworks
and lightweight frameworks. In general, inversion of control is the
idea that the model code should not directly invoke framework APIs,
but control is reversed and the framework injects functionality into
the model code where it is needed. The model developer specifies
where to inject functionality at specific points in the code by using

Table 1
Traditional versus lightweight framework design classification.

language annotations. Alternatively the locations in model code
where framework functionality is injected may be assumed based on
some predefined default or on analysis of the code structure itself,
a concept derived from aspect-oriented programming (Elrad et al.,
2001).

The broad objectives of this research are to measure framework
invasiveness in order to explore the implications on non-functional
attributes of model code quality, and to explore the utility of the
lightweight framework approach for scientific and environmental
modeling. Specifically, we seek to investigate the following
research questions: 1) how do we quantify and measure framework
invasiveness and what is the impact of this invasiveness on the
non-functional aspects of model code quality, and 2) what is the
utility of using lightweight environmental modeling frameworks
for model development? A better understanding of the phenom-
enon of framework to application invasiveness may help modelers
in choosing and designing modeling frameworks to improve the
quality of scientific models throughout their entire software life-
cycles.

2. Methods and materials
2.1. Environmental modeling frameworks

We performed a case study using two environmental models, a monthly water
balance model (based on Thornthwaite, 1948) and a complex watershed-scale model
(the Precipitation Runoff Modeling System, PRMS, Leavesley et al., 1983).
Thornthwaite was an ideal candidate for the study because it features a typical
structure for a hydrological simulation model and its size and complexity were
manageable for porting to a variety of frameworks. PRMS augmented the study with
a larger-scale scientific model which is in wide use. We used five environmental
modeling frameworks actively under development: the Earth System Modeling
Framework (ESMF) 3.1.1 (FORTRAN and C versions), the Common Component
Architecture (CCA) 0.6.6, the Open Modeling Interface (OpenMI) 1.4, and the Object
Modeling System (OMS) versions 2.2 and 3.0. It should be noted that the CCA is
a more general scientific modeling framework which has been designed to be
broadly applicable, whereas the other frameworks studied here were primarily
proposed and developed within the environmental modeling research community.
Several common structural measures were used to assess attributes of the envi-
ronmental model implementations including size, complexity, and object-oriented
coupling. Furthermore, a new set of software metrics was devised and applied to
quantify the invasiveness between the framework and model code. The frameworks
listed above were used to implement Thornthwaite. The OMS 2.2 and 3.0 frame-
works were used to implement PRMS. The programming languages and frameworks
used for the Thornthwaite and PRMS implementations are summarized in Table 2.
Additionally, three non-framework based implementations of Thornthwaite were
implemented using Java, C-++, and FORTRAN (Table 2) to provide a starting point for
developing the framework-based versions.

ESMF is an open source framework developed by the National Center for
Atmospheric Research (NCAR) for building climate, numerical weather prediction,
data assimilation, and other Earth science software applications (Collins et al., 2005).
ESMF is procedural in nature and supports model development using the FORTRAN
and C programming languages. CCA was developed by the members of the Common
Component Architecture Form, and is a component architecture for high perfor-
mance computing. Features of the CCA include multi-language, multi-dimensional
arrays, and a variety of network data transports not typically suited for wide area
networks (Armstrong et al., 1999). OpenMI was originally developed by a European
research group known as the 5th EU Framework Programme (1998—2002) and is
a software component interface definition for developing models in the water

Traditional Frameworks

Lightweight Frameworks

Components under the framework are:

bound statically at compile time

tightly coupled to the framework by extension of framework

classes, implementation of framework interfaces, use of framework

specific data types/classes, and use of framework specific functions/methods
Framework provides specialized versions of native language data types
Framework has a “large” programming interface (API)

Framework use may depend on many libraries

Components under the framework are:

bound dynamically at run time by use of language annotations/dependency
injection techniques (inversion of control software design pattern)

loosely coupled and largely independent of the framework

o Convention over configuration: developers only specify unconventional
details in code as defaults are otherwise assumed

Framework uses native language data types

Framework has a “small” programming interface (API)

W. Lloyd et al. / Environmental Modelling & Software 26 (2011) 1240—1250 1243

Table 2
Languages and frameworks for Thornthwaite and PRMS model implementation.

Model Language Framework Base Implementation
Thornthwaite Java CCA 0.6.6 OMS 3.0 Java
C ESMF 3.1.1 C++, no framework
Fortran ESMF 3.1.1 FORTRAN, no framework
C++ None OMS 3.0 Java
FORTRAN None OMS 3.0 Java
Java None OMS 3.0 Java
Java OMS 2.2 developed before experiment
Java OMS 3.0 developed before experiment
Java OpenMI 1.4 OMS 3.0 Java
PRMS Java OMS 2.2 developed before experiment
Java OMS 3.0 developed before experiment

domain (Blind and Gregersen, 2005). OpenMI supports rescaling temporal/spatial
data so that components operating on data with different geometries can intero-
perate seamlessly. The OpenMI Thornthwaite model in this study was developed
using a Java-based implementation of OpenM], although a .NET/C# version exists
and is generally considered more popular than the Java-based implementation. The
Object Modeling System (OMS) versions 2.2 and 3.0 were developed by the USDA —
Agricultural Research Service (ARS) in cooperation with Colorado State University.
OMS facilitates component-oriented simulation model development in Java, C/C++
and FORTRAN (David et al,, 2002, 2010), and version 2.2 provides an integrated
development environment (IDE) with numerous tools supporting data retrieval, GIS,
graphical visualization, statistical analysis and model calibration (Ahuja et al., 2005).

The ESMF 3.1.1, CCA 0.6.6, OpenMI 1.4, and OMS 2.2 frameworks provide an API
as well as specific data types which modelers must use in order to interface with the
framework. Alternatively, OMS 3.0 has been developed using a lightweight frame-
work design approach for model development. Lightweight frameworks exist in
other computing domains including web application frameworks such as Tapestry
(Apache Tapestry, 2010), Spring (SpringSource, 2010), and Terracotta (Terracotta,
2010) which is a distributed parallel computation lightweight framework. In
a lightweight framework design approach, modeling components are decoupled
from the framework API wherever possible so that they exist as plain classes
implementing only model specific logic. Furthermore, the boilerplate code (often
referred to as plumbing) is typically removed by refactoring using language anno-
tations. The lightweight framework design promises to advance environmental
modeling by streamlining model source code, which can lead to better reusability
and portability of framework-based model components (David et al., 2010).

2.2. Environmental models

2.2.1. Thornthwaite model
The Thornthwaite monthly water balance model simulates water allocation
among components of a hydrological system (Thornthwaite, 1948). The Thornthwaite

Monthly Input

| __*_

Parameter

model was originally developed by the US Geological Survey (USGS) as a small-scale
proof of concept prototype for a water balance component (McCabe and Markstrom,
2007). The model consists of a climate component, science components (e.g., length
of daylight, evapotranspiration, snow/rain accounting, soil water balance, and
runoff), a component for simulation output, and a component for model execution
control (Fig. 1). The disaggregation of the Thornthwaite model into components was
derived from the original non-framework based FORTRAN implementation of the
model when the OMS 2.2 and OMS 3.0 Java implementations were made. This
component disaggregation was carried over and replicated in each subsequent model
implementation (the base model implementations are listed in Table 2). Both the OMS
2.2 and OMS 3.0 Thornthwaite Java implementations were available prior to this
study with the OMS 3.0 implementation used as a base to provide the FORTRAN, C+-+,
CCA (Java), Java, and OpenMI (Java) implementations. For the OpenMI Thornthwaite
implementation, model flow control had to be substantially reworked because
OpenMI 1.4 requires a “functional programming” approach to flow control versus the
traditional “procedural programming” approach used by the other frameworks.
Procedural programming uses a series iterative statements to change the state of the
program to define the computation, whereas functional programming avoids state
and mutable data by defining the computation as a series of function calls in
arecursive manner (Mitchell, 1996). The plain FORTRAN model implementation was
used to implement the ESMF FORTRAN model and the plain C++ model imple-
mentation was used to implement the ESMF C model. At the time of implementation,
ESMF did not support native C++ so the C++ was easily converted to C as the model
was simultaneously ported to the ESMF C framework.

The Thornthwaite model uses a simple monthly time step which was driven by
the data input file. No special spatial aggregation/disaggregation or unit trans-
formations were required for this model. The model was selected since it has a typical
structure for a hydrological simulation model and its size and complexity were
manageable for porting to a variety of available frameworks. Different versions (i.e.,
different programming languages) of the Thornthwaite model were implemented
under the environmental modeling frameworks (Table 2); however, all model
implementations were coded to produce identical numerical output. Programming
language specific formatting functions were not used. The non-framework FORTRAN
implementation of Thornthwaite represents the smallest complete implementation
at 244 lines of code which included eight distinct modeling components. The
Thornthwaite model implementation for the environmental modeling frameworks
made use of only basic fundamental framework aspects including framework support
for component aggregation and component interaction/communication. Monthly
time stepping was driven by the data input file.

2.2.2. Precipitation-runoff modeling system (PRMS)

The precipitation-runoff modeling system (PRMS) (Fig. 2) is a deterministic,
distributed-parameter model developed to evaluate the impact of various combi-
nations of precipitation, climate, and land use on stream flow, sediment yields, and
general basin hydrology (Leavesley et al., 1983). PRMS source code used in this study
was based on the source code originally implemented using the Modular Modeling
System (MMS) (Leavesley et al., 2002, 2006). Daily basin response to normal and
extreme rainfall and snowmelt can be simulated to evaluate changes in water
balance relationships, flow regimes, flood peaks and volumes, soil—water

Monthly Output

- lSurface Runoff |

= | Soil Moisture

IAcruar ET

|Snow Storage

|
L Monthly Controller

| ’\
Potential ET) |

|
| |
|
Runoff
|

I

I

I

I

I

I

I

I

I

I

I

|
—

Fig. 1. Schematic of Thornthwaite model components (from McCabe and Markstrom, 2007).

1244

W. Lloyd et al. / Environmental Modelling & Software 26 (2011) 1240—1250

Sol \
radlatl

Precipitation

I
Evaporation Sublimation | Air temperature
T A i
Y
Plant canopy
interception
i [}
I Rain i Throughfall 1 3
Evaporation | b4 | Rain
and ! | Snowpack ' £ ;
o e vaporation
Transpiration : : " S i
Transpiration | ! T urface runof
| Snowmelt U
‘r A 4 Y to stream or lake >
Soil-Zone Reservoir Impervious-Zone Reservoir |
LRechangezone s — el
Lower zone
i Subsurface recharge
Ground-water
recharge Subsurface
Reservoir Interflow (or subsurface
flow) to stream or lake -
[i

¢ Ground-water recharge

Ground-Water
Reservoir

Ground-water discharge to stream or lake

Ground-water
sink

N,
>

Fig. 2. Schematic of the Precipitation Runoff Modeling System (from Markstrom et al., 2008).

relationships, sediment yields, and groundwater recharge. PRMS in contrast to
Thornthwaite augmented the study with a larger-scale scientific model which is in
wide use. Due to the large size of the PRMS model (~ 17,000 lines of code), and
limited time and resources, it was not feasible to port the model outside the OMS
framework for this study. Only Java-based implementations in the OMS 2.2 and 3.0
frameworks were studied. Similar to Thornthwaite model framework imple-
mentations, the PRMS model implementations were coded to produce identical
numerical output. The OMS 2.2 PRMS implementation consisted of 27 modeling
components and approximately 17,000 lines of code. The PRMS model was dis-
aggregated into modeling components based on the physical processes of the
system with initial model disaggregation performed in the 1980s. The ability to
support different approaches for modeling various physical processes such as
evapotranspiration was the primary motivation for PRMS disaggregation. Both
PRMS implementations (OMS 2.2 and 3.0) utilized framework support for compo-
nent aggregation, interaction, and communication as well as model time stepping.

2.3. Framework invasiveness measures

Research in object-oriented software evaluation has produced numerous metrics
which help to measure attributes such as the coupling, cohesion, and inheritance
among classes in an object-oriented program (Chidamber and Kemerer, 1994).
Several coupling measures already exist which attempt to quantify dependencies
among classes in programs including coupling between object classes (CBO), efferent
coupling (fan-out), afferent coupling (fan-in), response for a class (RFC), and message
passing coupling (MPC). But are these coupling measures useful to quantify the
dependencies between framework and modeling code? CBO and RFC have been
shown to correlate positively with the quantity of software failures in object-oriented
programs (Basil et al., 1996; Briand et al., 2000). Briand et al. (2000) further recom-
mended that measuring coupling to library classes be done separately from
measuring coupling to application classes as some differences are seen. In this study,
we are interested in focusing on measuring the dependencies between framework
classes (modules) and application (model) code. This is very similar to Briand’s
measurement of coupling to library classes in an object-oriented system. New metrics
may help to quantify specifically the dependencies between application code and
framework APIs. The following measures are proposed to quantify the invasiveness
between environmental modeling frameworks and model code:

. Framework data types used (FDT-used).

. Framework data type uses (FDT-uses).

. Framework functions used (FF-used).

. Framework function type uses (FF-uses).

. Framework dependent lines of code (FDLOC).

abh WN =

2.3.1. Framework data types and framework functions

There are two primary framework constructs for which we quantify usage in
a model: framework data types and framework functions. We count the total
number of framework data types used (FDT-used), and the total number of frame-
work data type uses in the modeling code (FDT-uses). FDT-used counts the total
number of unique framework types (classes, data structures, types, etc.) which are
used in the model. FDT-uses counts the total number of uses of framework specific
data types in the model. The total number of framework functions used (FF-used),
and the total number of framework function uses (calls) appearing in the modeling
code (FF-uses) are also counted. FF-used counts the total number of unique
framework functions (functions, methods, subroutines, etc.) which are called in the
model. FF-uses counts the total number of calls to framework functions in the model.

Using both framework data type constructs and framework function constructs
in modeling code introduces framework dependencies. In order to reuse model code
outside the framework, framework constructs must be replaced with equivalent
non-framework versions. Three variations of the framework metrics can be calcu-
lated: a simple raw count, a count of framework construct usage weighted per 1000
lines of code (KLOC) (e.g., FDT/FF-used/-uses per KLOC), and the percentage of usage
relative to all framework constructs used/uses in the application code (e.g., % FDT/FF-
used/-uses). The raw count can be used to compare the number of framework
constructs used/uses among different framework-based model implementations.
Normalizing by KLOC allows the density of framework construct usage between
models to be compared using a common code size. The percentage of framework
constructs (FDT or FF) used/uses versus all constructs (FDT or FF) used/uses in
a program can help us understand the ratio of usage that depends on the framework.
This latter metric is rather tedious to calculate since it requires a complete analysis of
constructs (data types or functions) for the entire application. For this study when
counting total constructs used/uses, constructs which were declared by the
modeling code were not included in the total count of constructs used.

W. Lloyd et al. / Environmental Modelling & Software 26 (2011) 1240—1250 1245

2.3.2. Framework dependent lines of code (FDLOC)

To measure the invasiveness between model code and environmental modeling
framework code, we counted the total number of lines of code which depend on the
framework. A framework dependent line of code is defined as a line of code that
requires the framework in order to compile. This implies that a framework depen-
dent line of code contains at least one framework specific reference. For measure-
ment purposes, FDLOC is a surrogate for quantifying boilerplate code. Boilerplate
code is defined herein as sections of code that are included in many places with little
or no alteration, but that are required in order to adapt model code to run under the
framework of implementation. For counting purposes, it is difficult to define
a boilerplate line of code precisely, because the classification requires a functional
interpretation by the person or tool performing the count. A boilerplate line of code
may not include any framework specific reference, but its existence in the model
code is still required for framework adaptation. Conversely, framework dependent
lines of code can be easily identified because of the strict requirement that they
contain a reference to the framework. In this study, we calculated two variations of
FDLOC: raw count and a percentage relative to the total lines of model code (%
FDLOC). The raw count can be used to compare the number of lines of framework
dependent code between model implementations. The percentage of FDLOC versus
all LOC in a program is used to compare framework dependent code density across
model implementations. In this study, FDLOC was computed manually by inspecting
source code. It may be desirable for future analysis of large scale systems to develop
a tool for collecting the FDLOC metric.

2.4. Code quality measures

Code quality tends to be an elusive property to quantify in software measure-
ment because its definition varies greatly depending on the software requirements.
As stated previously, we are interested in understanding the impact of framework
invasiveness with regard to the non-functional quality attributes of model code such
as maintainability, understandability, portability, and reusability. For this study, as
a surrogate for measuring non-functional attributes of model code quality, we use
three primary measures (Fenton and Pfleeger, 1997): 1) size, measured by counting
lines of code (LOC); 2) complexity, measured by determining cyclomatic complexity;
and 3) coupling, measured using efferent coupling (fan-out), afferent coupling (fan-
in), and coupling between object classes (CBO). Cyclomatic complexity (CC) counts
the number of linearly independent paths through a program'’s source code. This is
a surrogate for measuring code complexity and has been a widely used measure in
computer science. Coupling between object classes (CBO) is perhaps the most well-
known coupling measure. Ideally we would have used this measure for all model
language/framework implementations. However, not all of the models were coded
in an object-oriented language as some were implemented using C and FORTRAN. To
quantify coupling, we measured efferent (fan-out) and afferent (fan-in) coupling
because these measures can be collected against against both procedural and object-
oriented code. Efferent coupling is the number of classes which make reference to
a class and can be thought of as the number of uses “outside” of the class. Afferent
coupling is a dependency measure which counts the number of classes referenced
by a class and can be thought of as the classes used “inside” the class. Previous
research has suggested that large code size and high degrees of certain types of
coupling inversely correlate with maintainability, an important non-functional
quality attribute (e.g., Dagpinar and Jahnke, 2003; Anda, 2007).

2.5. Development/analysis tools

Static analysis tools that supported analysis of FORTRAN, C/C++, and Java were
used to analyze the model implementations. SLOCCOUNT (Wheeler, 2009) was used
to count lines of code. Understand 2.0 Analyst (Scientific Tools, 2009) was used to
collect the LOC, CC, CBO, and fan-in/fan-out coupling software metrics. Function and
data type usage reports produced by Understand 2.0 were parsed using a custom
program to generate data for the FDT and FF usage measurements. FDLOC were
determined manually by counting lines of code. The NetBeans integrated develop-
ment environment (IDE) was used for all Java code development which included
supporting the development of the OMS, OpenMI, and CCA based models. C/Fortran
development was accomplished using a UNIX-based text editor.

3. Results
3.1. Thornthwaite model

For the Thornthwaite model, the framework implementations
were coded to generate identical functionality and output given the
same inputs. This approach allowed us to attribute differences
observed between the model implementations to the differences
among the various languages and frameworks used. The size and
complexity measurements of the Thornthwaite model framework
implementations are shown in Table 3. We observed a five-fold

Table 3

Thornthwaite lines of code (LOC) and cyclomatic complexity (CC) metrics.
Language/Framework Total Average CC/method Total CC

LOC

FORTRAN only 244 333 40
OMS 3.0 Java 295 2.38 31
Java only 319 2.85 37
C++ only 405 241 41
OMS 2.2 Java 450 1.18 103
ESMF 3.1.1 C 583 1.97 65
ESMF 3.1.1 FORTRAN 683 1.44 56
OpenMI 1.4 Java 880 1.61 116
CCA 0.6.6 Java 1635 2.25 276

variation in model size from a low of 295 lines of code (LOC) for
OMS 3.0 to a high of 1635 LOC for CCA. The OMS 3.0 framework was
the only framework which enabled a smaller model (in LOC) than
the implementation in the equivalent native language, i.e., the OMS
3.0 Thornthwaite implementation was 295 LOC compared to 319
for Java-only. Ideally, a framework-based model implementation
should have a smaller code size than a plain-language imple-
mentation where the reduction in code size reflects code reuse
from aspects of the model’s functionality being provided by the
framework. Not counting non-framework (language only) models,
Table 3 shows a two-fold variation in average cyclomatic
complexity (CC/method) from a low of 1.18 for OMS 2.2 to a high of
2.38 for OMS 3.0 and a nine-fold variation in total CC from a low of
31 for OMS 3.0 to a high of 276 for CCA. The CCA framework
produced an unusually large amount of generated code. The
Thornthwaite model code size as implemented in CCA was so large
that it was treated as a statistical outlier (+/— 2 standard devia-
tions) for nearly all metrics collected in this study. To compensate
for the large quantity of boilerplate code in the CCA model imple-
mentation, we only counted lines of code for the eight Java
component implementation files where model code was actually
inserted. These eight files, were essentially the only files that were
physically edited during model implementation. Any unedited files
automatically generated by CCA were ignored for our measure-
ments. This approach allowed the CCA Thornthwaite model metrics
to fall within two standard deviations as it allowed a similar
number of source files to be analyzed for the model, essentially one
file per modeling component.

Coupling measures for the Thornthwaite model framework
implementations are shown in Table 4. We observed nearly a two-
fold variation in total fan-out (efferent coupling) from a low of 100
for ESMF C to a high of 195 for CCA and a three-fold variation in
total fan-out (efferent coupling) from a low of 70 for OMS 2.2 to
a high of 215 for CCA. For coupling between object classes (CBO),
only four model implementations could be measured since CBO
was not measurable for the C and FORTRAN implementations.
Additionally, OMS 2.2 uses XML configuration files to specify all

Table 4

Thornthwaite model coupling measures. CBO is coupling between objects.
Language/Framework Total Fan-In Total Fan-Out Average

(Afferent) (Efferent) CBO/class

FORTRAN only N/A N/A N/A
OMS 3.0 Java 116 70 0.89
Java only 67 92 0.89
C++ only 75 115 0.89
OMS 2.2 Java 116 70 0
ESMF 3.1.1 C 100 155 N/A
ESMF 3.1.1 FORTRAN N/A N/A N/A
OpenMI 1.4 Java 126 177 1.1
CCA 0.6.6 Java 195 215 0

1246 W. Lloyd et al. / Environmental Modelling & Software 26 (2011) 1240—1250

Table 5
Thornthwaite model framework invasiveness rankings (lowest to highest) by
measure.

Framework FDT-used FDT-uses FF-used FF-uses FDLOC
Implementation

OMS 3.0 Java 1 1 2 1 1

OMS 2.2 Java 3 2 1 2 2
ESMF 3.1.1 FORTRAN 2 4 3 4 4
ESMF 3.1.1 C 5 5 4 3 3
OpenMI 1.4 Java 4 3 5 6 5

CCA 0.6.6 6 6 6 5 6

component interaction resulting in zero measured CBO for the
model. For the Thornthwaite model framework implementations,
measurements for size, complexity and coupling were positively
correlated. Total LOC and CC had a correlation coefficient of r = 0.94
(df = 4, p < 0.01), total LOC and total fan-in had a correlation
coefficient of r = 0.92 (df = 3, p < 0.05), and total CC with total fan-
in had a correlation coefficient of r = 0.95 (df = 3, p < 0.02).

In this study, all frameworks with the exception of the OMS 3.0
framework can be classified as traditional frameworks as described
in Section 1. These frameworks generally provide specialized data
types to wrap native language data types, and also contain
numerous API functions which are used to implement component
definition and communication. Invasiveness measure rankings
(trending from lowest to highest) for the Thornthwaite model
framework implementations are shown in Table 5. The rankings in
Table 5 are based on detailed results of the individual invasiveness
measures listed in Table 6. For the framework invasiveness
measures, the OMS 3.0 Thornthwaite model framework imple-
mentation appeared to be the least invasive, i.e., this imple-
mentation had far fewer framework dependencies than others. A
12-fold variation in FDLOC was observed from a low of 44 for OMS
3.0 to a high of 533 for CCA. We observed a 15-fold variation for
framework data types used (FDT-used), from a low of 1 for OMS 3.0
to a high of 15 for CCA. For framework data type uses (FDT-uses), we
observed a 135-fold variation from a low of 1 for OMS 3.0 to a high
of 135 for CCA. Framework functions used (FF-used) varied seven-
fold from a low of 7 for OMS 2.2 (OMS 3.0 had 8) to a high of 48
for CCA. Framework function uses (FF-uses) varied 13-fold from
a low of 21 for OMS 3.0 to a high of 280 for CCA. The Thornthwaite

scientific code was essentially the same for all of the environmental
modeling framework implementations, with the observed differ-
ences resulting from various framework-specific requirements to
implement the model. The large variations in the metrics suggest
that variations in framework design likely impact the modeling
code.

Table 6 also shows framework invasiveness metrics scaled to
a percentage. The percentage scaling shows how much of the
overall percentage of an attribute is framework dependent. For
FDLOC (%), nearly a three-fold variation was observed from a low of
14.84% of LOC dependent on the framework for OMS 3.0 to a high of
41.42% LOC dependent on the framework for ESMF FORTRAN. For
FDT-used (%), a ten-fold variation was observed from a low of 4.67%
for OMS 3.0 data types used being framework dependent to a high
of 46.88% for CCA. For FDT-uses (%), a 47-fold variation was
observed from a low of 1.35% of OMS 3.0 data type uses being
framework dependent to a high of 64.29% for OMS 2.2. For FF-used
(%), a nearly three-fold variation was seen from a low of 26.67% of
OMS 3.0 functions used being framework dependent to a high of
78.57% for ESMF FORTRAN. FF-uses (%) varied more than two-fold
from a low of 40.38% of OMS 3.0 function uses being framework
dependent to a high of 96.1% for ESMF FORTRAN. Overall, a model
implementation with low framework invasiveness should have
a low percentage of data type, functions, and LOC dependence on
the underlying framework.

The final invasiveness measurement scaling shown in Table 6 is
a scaling of attribute occurrences per 1000 lines of code (KLOC).
Since the model implementations varied in size, this scaling
provides a method for a side-by-side comparison. For FDLOC/KLOC,
nearly a three-fold variation was observed from 148 for OMS 3.0 to
414 for ESMF FORTRAN. For FDT-used/KLOC, a five-fold variation
was seen from 3.39 for OMS 3.0 to 17.15 for ESMF C. For FDT-uses/
KLOC, a 61-fold variation was observed from 3.39 for OMS 3.0 to
209.26 for ESMF C. FF-used/KLOC was shown to exhibit nearly
a two-fold variation from 15.56 for OMS 2.2 to 29.36 for CCA. FF-
uses/KLOC was observed to have a three-fold variation from
216.69 for ESMF FORTRAN to 71.19 for OMS 3.0.

FDLOC, FDT-used, FF-used correlated with model size (df = 4,
p < 0.05); however, none of the percentage or scaling invasiveness
measures correlated with size. For complexity, three invasiveness
measures (FDLOC, FDT-used, and FF-used) were shown to correlate

Table 6

Framework invasiveness detailed measurements for Thornthwaite.
Framework Implementation FDLOC FDT-used FDT-uses FF-used FF-uses
OMS 3.0 Java 44 1 1 8 21
OMS 2.2 Java 147 5 72 7 33
ESMF3.1.1C 178 10 122 13 77
ESMF 3.1.1 FORTRAN 280 3 109 11 148
OpenMI 1.4 Java 338 8 73 20 280
CCA 0.6.6 Java 533 15 135 48 215
Framework Implementation FDLOC (%) FDT-used (%) FDT-uses (%) FF-used (%) FF-uses (%)
OMS 3.0 Java 14.84 4.67 1.35 26.67 40.38
OMS 2.2 Java 32.67 41.67 64.29 50.00 73.33
ESMF3.1.1C 30.85 30.30 49.59 46.43 76.24
ESMF 3.1.1 FORTRAN 41.42 27.27 51.90 78.57 96.10
OpenMI 1.4 Java 38.41 23.53 3230 37.74 79.10
CCA 0.6.6 Java 32.60 46.88 49.82 70.59 69.58
Framework Implementation FDLOC/KLOC FDT-used/KLOC FDT-uses/KLOC FF-used/KLOC FF-uses/KLOC
OMS 3.0 Java 148 3.39 3.39 27.12 71.19
OMS 2.2 Java 327 11.11 160.00 15.56 73.33
ESMF3.1.1C 309 17.15 209.26 22.30 132.08
ESMF 3.1.1 FORTRAN 414 4.39 159.59 16.11 216.69
OpenMI 1.4 Java 384 9.09 82.95 22.73 318.18
CCA 0.6.6 Java 326 9.17 82.57 29.36 131.50

W. Lloyd et al. / Environmental Modelling & Software 26 (2011) 1240—1250 1247

Table 7

PRMS model lines of code (LOC) and cyclomatic complexity metrics.
Framework Implementation Total LOC Average CC/method Total CC
OMS 3.0 Java 10163 9.75 702
OMS 2.2 Java 16997 137 2575

with total CC (df = 4, p < 0.05). A correlation existed between FF-
used/KLOC and average method cyclomatic complexity; however,
correlation coefficients for other measures with average CC/method
were almost random, so it is possible the FF-used/KLOC relation is
incidental. Correlation coefficients between invasiveness and total
complexity were generally positive though they varied in magni-
tude. Total fan-in (afferent) and fan-out (efferent) coupling corre-
lated significantly with FDLOC, FDT-used, and also %FF-used (fan-in
only) (df = 3, p < 0.05).

3.2. PRMS model

The invasiveness metrics were also applied to evaluate two Java-
based PRMS model implementations under the OMS 2.2 and 3.0
frameworks. The size and complexity metrics for the PRMS
framework implementations are shown in Table 7. PRMS model
code size was reduced 40% in the OMS 3.0 framework imple-
mentation. Much of the size reduction can be attributed to the
elimination of component getter and setter methods. “Getter” and
“setter” methods are accessor methods which intercept read/write
access to data variables in an object-oriented (OO) program. These
constructs are encouraged as a way to provide data encapsulation,
which is used to prevent unintentional changes to variables. Data
encapsulation is an encouraged best practice in structured and OO
programming. More recently it has been recognized that data
encapsulation as a best practice is overused, particularly when
getter/setter accessor methods never provide any additional func-
tionality. In these cases, getters and setters should be removed to
reduce the overall code size and should only be included when
actual data encapsulation is being performed. The OMS 3.0 PRMS
implementation makes use of plain old Java objects (POJOs) which
use only native language data types, whereas the OMS 2.2 PRMS
implementation uses framework-specific data types and
framework-specific interfaces. The average complexity per method
increased significantly from OMS 2.2 to OMS 3.0. This is because the
total number of methods dropped significantly through elimination
of the getter and setter methods. A reduction in model complexity
is reflected in the more than three-fold reduction in total CC
observed in the OMS 3.0 PRMS model implementation versus OMS
2.2 (Table 7).

Coupling measures for the PRMS model implementations under
the OMS 2.2 and 3.0 frameworks are shown in Table 8. Reductions
in both total fan-out (efferent) and total fan-in (afferent) coupling
are observed in the OMS 3.0 PRMS implementation. Coupling was
likely reduced in relation to the reduction in code size attributed by
removing getter and setter methods. The average number of
methods per component dropped from 85 to 3.6 in OMS 3.0. There
was no measurable coupling between object classes (CBO) in the
PRMS model because the OMS frameworks handle component
interaction independently from the model source code. This feature

Table 8

PRMS model coupling measures. CBO is coupling between objects.
Framework Total Fan-In Total Fan-Out Average Avg Number
Implementation (Afferent) (Efferent) CBO/class Methods/Class
OMS 3.0 Java 1232 755 0 3.6
OMS 2.2 Java 3517 1428 0 85.4

Table 9
PRMS model invasiveness measures.
Framework FDT-used FDT-uses FF-used FF-uses
Implementation
OMS 3.0 Java 1 3 5 7
OMS 2.2 Java 16 1788 15 2854
Framework FDT-used (%) FDT-uses (%) FF-used (%) FF-uses (%)
Implementation
OMS 3.0 Java 5 0.19 5.5 2
OMS 2.2 Java 50 65.9 19.2 91.8
Framework FDT-used/ FDT-uses/ FF-used/ FF-uses/
Implementation KLOC KLOC KLOC KLOC
OMS 3.0 Java 0.09 0.29 0.49 0.69
OMS 2.2 Java 0.94 105.2 0.88 167.9

enables OMS model components to be reused by simply plugging
them into other models since the components are not coupled to
each other through code dependencies. Framework invasiveness
measures for the PRMS model implementations are shown in
Table 9. A significant reduction is seen in the use of framework data
types and functions using the OMS 3.0 lightweight framework
implementation.

3.3. Framework invasiveness and model size

One argument against using the Thornthwaite model to eval-
uate environmental modeling framework to code invasiveness is
that the model code size is small and model functionality is not
representative of larger-scale scientific models in wide use. One
reason for PRMS model implementation and evaluation is the
opportunity to obtain framework invasiveness data for a much
larger model. We compared the Thornthwaite and PRMS model
implementations using the framework invasiveness density
measures from Tables 6 and 9 to examine if large, complex model
implementations exhibited similar invasiveness compared with
smaller, simplistic model implementations. Grouping the four
framework invasiveness measures together, we found a general
correlation between the two models for invasiveness density
measures (p = 0.012, df = 6). The density of FDT-used was similar
for the OMS 3.0 (4.67%, 5.0%) and OMS 2.2 (41.67%, 50%) frame-
works for both the Thornthwaite and PRMS models. Density of FDT-
uses was also similar for the OMS 3.0 (1.35%, 0.19%) and OMS 2.2
(64.29%, 65.9%) frameworks. The density of FF-used was shown to
be lower for a larger-scale model with OMS 3.0 (26.67%, 5.5%) and
OMS 2.2 (50.0%, 19.2%) for Thornthwaite and PRMS respectively.
Finally, the density of FF-uses was found to not be similar for OMS
3.0 (40.38%, 2%) but similar for OMS 2.2 (73.33%, 91.8%) for
Thornthwaite and PRMS respectively. Framework function usage
density represents the ratio of framework function usage versus all
function usage. In a larger, more complex model such as PRMS, we
surmise that a greater quantity of the function usage results from
the modeling logic itself and not simply calls to framework func-
tions. Since Thornthwaite was a much smaller model overall, the
majority of function usage was framework-based. A larger study
which investigates additional models of varying complexity should
help to provide a better understanding of the relationships
between model size and framework invasiveness.

4. Discussion

This research sought to investigate the implications of frame-
work invasiveness on non-functional attributes of model code
quality and to explore the utility of the lightweight framework

1248 W. Lloyd et al. / Environmental Modelling & Software 26 (2011) 1240—1250

approach for scientific and environmental modeling. Our initial
investigation produced the following observations which are dis-
cussed below.

4.1. Framework invasiveness and model quality

To investigate relationships between non-functional attributes
of model code quality and invasiveness, we used the Chidamber
and Kemerer’s (1994) object-oriented software metrics as indirect
measures. Briand et al. (1999, 2000) identified coupling as an
important dimension for predicting quality of object-oriented
systems and coupling has also been shown to help to predict
software failures in object-oriented code. Furthermore, size and
coupling have been shown to be useful in predicting the main-
tainability of code. For this study, we lacked necessary data for
coupling between object classes (CBO). Instead, we used efferent
(fan-out) and afferent (fan-in) coupling measures. These measures
were calculated for five different framework implementations of
the Thornthwaite model (OMS 3.0, OMS 2.2, ESMF C, OpenMI, CCA),
and two different framework implementations of the PRMS model
(OMS 2.2 and 3.0). We observed that framework implementations
for both models having the lowest invasiveness measures for FDT-
uses and FF-uses also had the lowest values for fan-in/fan-out
coupling (p = 0.002, df = 5; p = 0.011, df = 5). Framework imple-
mentations for both models with higher fan-in/fan-out coupling
used more framework functions and data types. This relationship
shows that the framework invasiveness measures strongly corre-
late with fan-in/fan-out coupling measures. We also found that
model framework implementations with low invasiveness
measures for FDT-uses and FF-uses had the smallest code sizes
(LOC) (p =0.024, df = 5; p = 0.024, df = 5) and total CC (p = 0.0007,
df=5; p=0.0007,df = 5). Models with larger LOC and total CC used
more framework functions and data types. This relationship shows
that the framework invasiveness measures were correlated with
both size and complexity measures. Previous research (e.g., Anda,
2007) has identified a negative relationship between both size
and coupling with software maintainability while our research
shows that framework invasiveness correlates with size and
coupling. When considering prior research, this finding suggests
a possible important connection between framework invasiveness
and non-functional code quality attributes such as maintainability.

4.2. Environmental modeling using the lightweight framework
approach

In this study, the OMS 3.0 framework with a lightweight
framework design approach was utilized to produce model
implementations for both the Thornthwaite and PRMS models. Five
measures were applied to quantify framework to model invasive-
ness: FDLOC, FF-used, FF-uses, FDT-used, and FDT-uses. Using these
measures, the OMS 3.0 model implementations had lower frame-
work to model invasiveness (Tables 6 and 9) when compared with
the other frameworks in this study. Additionally, the OMS 3.0
Thornthwaite and PRMS model implementations had lower overall
code size (LOC), lower cyclomatic complexity (CC), and lower
afferent (fan-in) and efferent (fan-out) coupling (Tables 4 and 8).
Overall, the lightweight framework approach as tested using OMS
3.0 produced models which resulted in both smaller and simpler
model implementations in terms of code size and complexity, and
with lower invasiveness and coupling. These results highlight
possible code quality improvements which may be realized using
a lightweight framework approach to model implementation.
Previous software engineering research suggests that lower
coupling may result in fewer system faults (Briand et al., 1999,
2000; Dagpinar and Jahnke, 2003). Our investigation into the

lightweight framework approach to modeling shows promise in
helping to improve both functional and non-functional attributes of
model code quality.

4.3. Study limitations

This study contained a number of limitations which should be
pointed out:

e OMS 3.0 was the only framework classified as a lightweight
framework. Ideally, our study would have included more than
one lightweight framework but none were available to us.
Code size (LOC), cyclomatic complexity (CC), and coupling are
structural code measures and they do not directly measure
code quality. Their usage herein has been as a surrogate for
code quality. The relationships between code quality and these
measures have been established by prior research in software
measurement within the field of computer science. Future
research might propose studies which more directly investi-
gate relationships between framework invasiveness and
specific non-functional code quality attributes such as main-
tainability. However it should be noted that the exercise of
quantifying any non-functional quality attribute for such
studies will always be a challenge.

e ESMF 3.1.1 did not support Java, thereby forcing us to compare
C/FORTRAN Thornthwaite model implementations with Java-
based implementations.

e The framework function (FF) and framework data type (FDT)
invasiveness measures did not account for the use of non-
traditional types of framework dependencies, such as the use
of language annotations and XML configuration files (e.g.,
Guerra et al., 2009). Annotations are neither framework func-
tions or data types so they are not accounted for with the FF/FDT
metrics. However, the framework dependent lines of code
(FDLOC) measure did count annotation lines of code as frame-
work dependent lines. An enhancement to the FF/FDT measures
might be to include some way to quantify the use of annotations
as a framework dependency. One simple approach might be to
simply count annotations as framework data type usages.
However, it should be noted that when porting code to another
language or framework annotations can easily be removed,
similar to how programming comments can be removed. We
posit that the impact of annotations on the refactoring effort is
likely to be significantly less than the effort required to replace
a framework specific data type or function usage.

e The researchers had to learn how to implement models using
the CCA 0.6.6, ESMF 3.1.1 and OpenMI 1.4 frameworks for the
Thornthwaite model implementations. Therefore, it is possible
that the CCA, ESMF and OpenMI Thornthwaite model imple-
mentations were “non-ideal” due to initial inexperience with
these frameworks. This limitation however is largely offset by
the simplicity of the Thornthwaite model. To counteract this
effect, both the ESMF and OpenMI based model implementa-
tions were submitted and reviewed by their respective
framework designers. For each of our Thornthwaite imple-
mentations, significant time was spent by the researchers so
that each model implementation was as concise and compact
as possible. Since Thornthwaite was not a large or complex
model, it is unlikely that an implementation by framework
experts would differ significantly from ours.

5. Summary and conclusions

This paper presents a unique comparison of environmental
modeling framework invasiveness using the Thornthwaite and

W. Lloyd et al. / Environmental Modelling & Software 26 (2011) 1240—1250 1249

PRMS hydrologic models implemented using a variety of available
frameworks. Framework invasiveness measures were developed to
quantify three attributes: framework data type usage, framework
function usage, and quantity of model code dependent on
a framework. For the environmental modeling frameworks studied,
less invasive model implementations exhibited an inverse corre-
lation with code size, complexity and coupling. Models imple-
mented using the OMS 3.0 framework had the lowest invasiveness
numbers and also the smallest size, complexity, and coupling. For
the Thornthwaite model, the OMS 3.0 implementation was only
40% as large as the average size of the traditional framework
implementations and about 30% as complex. For the PRMS model,
the OMS 3.0 implementation was 40% smaller and about 30% as
complex as the traditional non-lightweight OMS 2.2 based frame-
work implementation. Overall, the OMS 3.0 framework produced
less invasive model implementations when compared to the
traditional framework model implementations using OMS 2.2,
ESMF 3.1.1, OpenMI 1.4, and CCA 0.6.6. In conclusion, our study
showed that the use of a lightweight framework produced smaller,
less complex models with less coupling and framework-to-model
invasiveness leading us to suggest that a lightweight framework
approach for environmental modeling frameworks deserves
further attention.

Previous research has shown that structural measures are useful
in predicting non-functional quality attributes of code. Our inva-
siveness measures were shown to correlate with some of these same
structural measures. This suggests a potential relationship between
invasiveness and non-functional quality attributes of model code.
Based on our results, a lightweight framework approach to envi-
ronmental modeling is suggested in order to better develop model
code which is less dependent on a specific framework. The long-term
implications of using lightweight frameworks should be studied, and
future research should examine additional models as more light-
weight frameworks and lightweight framework model imple-
mentations become available for study. In addition, more detailed
studies to isolate the impact of invasiveness on specific non-
functional code quality attributes are desirable. For example, an in-
depth study could be designed to investigate more directly the
relationship between invasiveness and a specific non-functional
quality attribute such as maintainability. Further research and
application of lightweight frameworks should help us to better
understand the utility of this approach, ultimately guiding the envi-
ronmental modeling community towards better framework designs.

Acknowledgments

We would like to acknowledge Cecelia DeLuca from UCAR,
a member of the ESMF support team, who provided a review of the
ESMF FORTRAN Thornthwaite model implementation. We would
also like to thank Dr. Andrea Antonello who provided a code review
of our OpenMI 1.4 Java Thornthwaite implementation.

References

Ahuja, LR, Ascough I,]J.C., David, O., 2005. Developing natural resource modeling
using the object modeling system: feasibility and challenges. Advances in
Geosciences 4, 29—36.

Anda, B., 2007. Assessing software system maintainability using structural
measures and expert Assessments. In: Proceedings of the 23rd Intl. IEEE
Conference on Software Maintenance (ICSM 2007), October 2—5, Paris, France,
pp. 204—213.

Argent, R.M., 2005. A case study of environmental modelling and simulation using
transplantable components. Journal of Environmental Modelling & Software 20
(12), 1514—1523.

Argent, RM., Voinov, A., Maxwell, T, Cuddy, S.M., Rahman,].M., Seaton, S.,
Vertessy, R.A., Braddock, R.D., 2006. Comparing modelling frameworks —
a workshop approach. Journal of Environmental Modelling & Software 21 (7),
895-910.

Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker, S.,
Smolinski, B., 1999. Toward a common component architecture for high-
performance scientific computing. In: Proceedings of the 8th IEEE Intl.
Symposium on High Performance Distributed Computing (HDPC '99), August
3—6, Redondo Beach, CA, USA, pp. 115—124.

Basil, V.R,, Briand, L.C., Melo, W.L, 1996. A validation of object-oriented design
metrics as quality indicators. IEEE Transactions on Software Engineering 22
(10), 751-761.

Blind, M., Gregersen, J.B., 2005. Towards an open modeling interface (OpenMI) the
HamonET project. Advances in Geosciences 4, 69—74.

Briand, L.C., Wiist, J., Ikonomovski, H.L., 1999. Investigating quality factors in object-
oriented designs: an industrial case study. In: Proceedings of the 21st Inter-
national Conference on Software Engineering (ICSE '99), May 16—22, Los
Angeles, CA, USA, pp. 345—354.

Briand, L.C., Wust,]., Daly, J., Porter, D.V., 2000. Exploring the relationships between
design measures and software quality in object-oriented systems. Journal of
Systems & Software 15 (3), 245—-273.

Chidamber, S.R., Kemerer, C.F,, 1994. A metrics suite for object oriented design.
Transactions on Software Engineering 20 (6), 476—493.

Collins, N., Theurich, G., DeLuca, C., Suarez, M., Trayanov, A., Balaji, V., Li, P, Yang, W.,
Hill, C,, Silva, A., 2005. Design and implementation of components in the Earth
system modeling framework (ESMF). International Journal of High Performance
Computing Applications 19 (3) Fall/Winter 2005.

Dagpinar, M., Jahnke, J., 2003. Predicting Maintainability with Object-Oriented
Metrics — An Empirical Comparison. In: Proceedings of the 10th Working
Conference on Reverse Engineering (WCRE '03), November 13—16, Victoria, B.C.,
Canada, pp. 155—164.

David, O., Markstrom, S.L., Rojas, KW., Ahuja, LR., Schneider, W., 2002. The object
modeling system. In: Ahuja, L.R., Ma, L., Howell, T.A. (Eds.), Agricultural System
Models in Field Research and Technology Transfer. Lewis Publishers, Boca
Raton, FL, USA, pp. 317—344.

David, O., Ascough II,], Leavesley, G., Ahuja, LR., 2010. Rethinking modeling
framework design: object modeling system 3.0. In: Swayne, Yang, Voinov,
Rizzoli, Filatova (Eds.), iEMSs 2010 International Congress on Environmental
Modeling and Software — Modeling for Environment’s Sake, Fifth Biennial
Meeting, July 5—8, Ottawa, Canada, p. 8.

Dig, D., Johnson, R., 2006. How do APIs evolve? A story of refactoring. Journal of
Software Maintenance and Evolution: Research and Practice 18, 83—107.

Donatelli, M., Rizzoli, A.E., 2008. A design for framework-independent model
components of biophysical systems. In: Sanchez-MarréBéjar, Béjar, Comas,
Rizzoli, Guariso (Eds.), iEMSs 2008 International Congress on Environmental
Modeling and Software — Modeling for Environment’s Sake, Fourth Biennial
Meeting, July 7—10, p. 9. Barcelona, Catalonia.

Elrad, T, Filman, R., Bader, A., 2001. Aspect-oriented programming: introduction,
2001. Communications of the ACM 44 (10), 28—32.

Fenton, N., Pfleeger, S., 1997. Software Metrics: A Rigorous & Practical Approach,
Second Ed. PWS Publishing Company, Boston, MA.

Fowler, M., 2004. Inversion of Control Containers and the Dependency Injection
Pattern. 19 p.. Available from. http://www.martinfowler.com/articles/injection.
html (accessed 01.11).

Gamma, E., Helm, R,, Johnson, R., Vlissides,]., 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA.

Guerra, E.M,, Silveira, FF, Fernandes, C.T., 2009. Questioning traditional metrics for
applications which uses metadata-based frameworks. In: Proceedings of the
3rd Workshop on Assessment of Contemporary Modularization Techniques
(ACoM '09), October 26, Orlando, Florida, USA, pp. 35—39.

Jagers, H.R.A,, 2010. Linking data, models and tools: an overview. In: Yang, Voinov,
Rizzoli, Filatova (Eds.), IEMSS 2010 International Congress on Environmental
Modeling and Software — Modeling for Environment’s Sake, Fifth Biennial
Meeting, July 5—8. Swayne, Ottawa, Canada, p. 8.

Leavesley, G.H., Lichty, RW., Troutman, B.M., Saindon, L.G., 1983. Precipitation-
Runoff Modeling System (PRMS) User’s Manual U.S. Geological Survey water
resources investigation Report 83-4238, 207 p.

Leavesley, G.H. Markstrom, S.L, Restrepo, PJ., Viger, RJ., 2002. A modular
approach to addressing model design, scale, and parameter estimation
issues in distributed hydrological modelling. Hydrological Processes 16 (2),
173-187.

Leavesley, G.H., Markstrom, S.L., Viger, R.J., 2006. USGS modular modeling system
(MMS) - precipitation-runoff modeling system (PRMS). In: Singh, V.P,
Frevert, D.K. (Eds.), Watershed Models. CRC Press, Boca Raton, FL, pp. 159—177.

Li, W,, Henry, S., 1993. Object-oriented metrics that predict maintainability. Journal
of Systems and Software 23 (2), 111-122.

Markstrom, S.L., Niswonger, R.G., Regan, RS., Prudic, D.E., Barlow, P.M., 2008.
GSFLOW-Coupled Ground-water and Surface-water FLOW Model Based on the
Integration of the Precipitation-Runoff Modeling System (PRMS) and the
Modular Ground-Water Flow Model (MODFLOW-2005) U.S. Geological Survey
Techniques and Methods 6—D1, 240 p..

Maxwell, T, 1999. A paris-model approach to modular simulation. Journal of
Environmental Modelling & Software 14 (6), 511-517.

McCabe, G.J., Markstrom, S.L., 2007. A Monthly Water-Balance Model Driven by
a Graphical User Interface USGS Open-File Report 2007—1088, 6 p..

Mitchell, J.C., 1996. Foundations of Programming Languages. MIT Press., Cambridge,
MA.

Carlson, J., 2010. Object Modeling System. Available from. http://oms.javaforge.com
(accessed 01.11).

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html
http://oms.javaforge.com

1250

Rahman, J.M,, Seaton, S.P., Perraud, J.M., Hotham, H., Verrelli, D.I, Coleman, J.R.,
2003. It’'s TIME for a new environmental modelling framework. In: Post, D.A.
(Ed.), MODSIM 2003 International Congress on Modelling and Simulation.
Modeling and Simulation Society of Australia and New Zealand, July 2003, pp.
1727-1732.

Rahman,].M., Seaton, S.P., Cuddy, S.M., 2004. Making frameworks more useable:
using model introspection and metadata to develop model processing tools.
Journal of Environmental Modelling & Software 19 (3), 275—284.

Reed, M., Cuddy, S.M., Rizzoli, A.E., 1999. A framework for modelling multiple
resource management issues — an open modelling approach. Journal of Envi-
ronmental Modelling & Software 14 (6), 503—509.

Richardson, C., 2006a. POJOs in Action: Developing Enterprise Applications with
Lightweight Frameworks. Manning Publications Co., Greenwich, CT.

Richardson, C., 2006b. Untangling enterprise Java. ACM Queue 5 (4), 33—44.

Rizzoli, A.E., Davis, J.R., Abel, D.J., 1998. Model and data integration and re-use in
environmental decision support systems. Decision Support Systems 24,
127-144.

Scientific Toolworks, 2009. Understand — Source Code Analysis and Metrics. Avail-
able from. Scientific Toolworks, Inc. http://www.scitools.com (accessed 01.11).

W. Lloyd et al. / Environmental Modelling & Software 26 (2011) 1240—1250

SpringSource, 2010. SpringSource.org, a division of Vmware. http://www.
springsource.org Available from(accessed 01.11).

Tapestry, Apache, 2010. Apache Tapestry — Welcome to Tapestry. Available from.
Apache Software Foundation. http://tapestry.apache.org (accessed 01.11).

Terracotta, 2010. Terracotta. Available from. http://www.terracotta.org (accessed
01.11).

Thornthwaite, C.W., 1948. An approach toward a rational classification of climate.
Geographical Review 38 (1), 55—94.

Voinov, A, Costanza, R., Wainger, LA, Boumans, RMJ],, Villa, F, Maxwell, T,
Voinov, H., 1999. Patuxent landscape model: integrated ecological economic
modeling of a watershed. Journal of Environmental Modelling & Software 14
(5), 473—491.

Voinov, A, Fitz, C., Boumans, R., Costanza, R., 2004. Modular ecosystem modeling.
Journal of Environmental Modelling & Software 19 (3), 285—304.

Watson, F.G.R,, Rahman, J.M., 2004. Tarsier: a practical software framework for
model development, testing and deployment. Journal of Environmental
Modelling & Software 19 (3), 245—260.

Wheeler, D.A., 2009. SLOCCount. http://www.dwheeler.com/sloccount/ (accessed
01.11).

http://www.scitools.com
http://www.springsource.org
http://www.springsource.org
http://tapestry.apache.org
http://www.terracotta.org
http://www.dwheeler.com/sloccount/

	 Environmental modeling framework invasiveness: Analysis and implications
	1 Introduction
	2 Methods and materials
	2.1 Environmental modeling frameworks
	2.2 Environmental models
	2.2.1 Thornthwaite model
	2.2.2 Precipitation-runoff modeling system (PRMS)

	2.3 Framework invasiveness measures
	2.3.1 Framework data types and framework functions
	2.3.2 Framework dependent lines of code (FDLOC)

	2.4 Code quality measures
	2.5 Development/analysis tools

	3 Results
	3.1 Thornthwaite model
	3.2 PRMS model
	3.3 Framework invasiveness and model size

	4 Discussion
	4.1 Framework invasiveness and model quality
	4.2 Environmental modeling using the lightweight framework approach
	4.3 Study limitations

	5 Summary and conclusions
	 Acknowledgments
	 References

