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Abstract: This study reports on the integration of the European J2K-S model (a 
component-based system for fully distributed simulation of water balance and N dynamics 
in large watersheds) under the Object Modeling System 3 (OMS3) environmental 
modeling framework and subsequent evaluation of OMS3/J2K-S performance on the 
Cedar Creek Watershed (CCW) in northeastern Indiana, USA. Uncalibrated model 
performance for daily and monthly stream flow response was assessed using Nash-
Sutcliffe model efficiency (ENS) and percent bias (PBIAS) model evaluation coefficients. 
Simulations for nitrogen (N) loadings to Cedar Creek were also performed; however, the 
OMS3/J2K-S N dynamics sub-model is still undergoing testing so a formal statistical 
evaluation of this component was not performed. Comparisons of daily and average 
monthly simulated and observed stream flows for the 1997-2005 simulation period 
resulted in PBIAS and ENS coefficients ranging from -18.6% to -8.6% for PBIAS and 0.46 
to 0.68 for ENS. These values were similar or better than others reported in the literature for 
uncalibrated stream flow predictions at the watershed scale. The results show that the 
prototype OMS3/J2K-S watershed model was able to reproduce the hydrological 
characteristics of the CCW with sufficient quality, and should serve as a foundation on 
which to better quantify water quality (e.g., N dynamics) at the watershed scale. 
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1.  INTRODUCTION 
 

The Object Modeling System 3 (OMS3) currently being developed by the USDA-
ARS Agricultural Systems Research Unit and Colorado State University (Fort Collins, 
CO) provides a component-based environmental modeling framework which allows the 
implementation of single- or multi-process modules that can be developed and applied as 
custom-tailored model configurations (David et al., 2002). The value of continuous 
watershed simulation models like the Soil and Water Assessment Tool (SWAT) (Arnold et 
al., 1993) is reflected by programs like the Conservation Effects Assessment Project 
(CEAP) in the United States and the EU-Water Framework Directive (WFD) in Europe. 
The ARS CEAP Watershed Assessment Study (WAS) Project Plan (USDA-ARS, 2004) 
provides detailed descriptions of ongoing research studies at 14 benchmark watersheds in 
the United States. In order to satisfy the requirements of CEAP WAS Objective 5 
(“develop and verify regional watershed models that quantify environmental outcomes of 
conservation practices in major agricultural regions”), a new watershed model 
development approach was initiated to take advantage of OMS3 modeling framework 
capabilities. The European J2K-S model (Krause et al., 2006), a component-based system 
for fully distributed simulation of the water balance and N dynamics in large watersheds 
and catchments, was selected to provide the initial process-based model components. 
Specific objectives of this study were to: 1) implement J2K-S hydrological and N 
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dynamics components under the OMS3, 2) assemble a new modular watershed scale 
model for fully distributed transfer of water and N loading between land units and stream 
channels, and 3) evaluate the accuracy and applicability of the modular watershed model 
for estimating stream flow and N dynamics. The Cedar Creek watershed (CCW) in 
northeastern Indiana, USA was selected for application of the OMS3-based watershed 
model.  
 
2.  THE OBJECT MODELING SYSTEM 3 (OMS3) 
 

 
Figure 1.  OMS3 principle architecture. 

OMS3 closely resembles the generic architecture for environmental integrated 
modeling frameworks as presented by Rizzoli et al., 2008). It contains four primary 
foundations (Figure 1): modeling resources, the knowledge base of the system (e.g., 
metadata and ontologies), development methods and tools (e.g., science models), and 
various modeling products. The core consists of an internal knowledge base and 
development tools for model and simulation creation. OMS3 is based on the Java platform; 
however, it is highly interoperable with C, C++, and FORTRAN on all major operating 
systems and architectures. Model development under OMS3 is component-based and there 
are only minimal requirements for plain objects (POJOs) to be represented as an OMS3 
component. In OMS3, as well as most other modeling frameworks, the term component 
refers to a concept in software development which extends the reusability of code from the 
source level to the executable. Components are context-independent, both in the 
conceptual and technical domain, and represent self contained software units that are 
separated from the surrounding framework environment. Furthermore, the OMS3 modeler 
does not have to learn and use framework data types or an extensive Application 
Programming Interface (API).  

To allow for scalable models and processing with complex data sets, the execution of 
components under OMS3 is always multi-threaded (i.e., components are executed in 
parallel if the data flow allows it and no explicit thread coding is required). OMS3 utilizes 
the Domain Specific Language (DSL) concept to provide for a concise, robust, and 
flexible representation of model simulations. With easy to setup DSLs, simple simulations 
(e.g., model calibration, sensitivity and uncertainty analysis setups) can be created and 
executed in OMS3 from different environments such as IDEs, the OMS3 modeling 
console, the command line, or any application that embeds an OMS3 runtime version. 
Finally, OMS3 is a non-invasive modeling framework as there are no framework 
interfaces to implement, no classes to extend and polymorphic methods to overwrite, and 
most importantly no need to replace common native and custom language data types with 
framework-specific data types. 
 
3.  THE OMS3/J2K-S WATERSHED MODEL 
 

The J2K-S modeling system (Krause et al., 2006; Krause et al., 2009) integrated in 
OMS3 was used for the simulation of the hydrological and N dynamics of the CCW in 
Indiana. J2K-S is a modular, spatially distributed system which implements hydrological 
and N processes as encapsulated process components and operates at various temporal and 
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spatial aggregation levels throughout the watershed. The J2K-S model was developed in 
the JAMS (Jena Adaptive Modeling System) modeling framework which is derived from 
an earlier, more API-based OMS Vers. 1. Therefore, the JAMS J2K-S model was already 
componentized and its classes followed the general modeling framework IEF 
(Init/Execute/Finalize) lifecycle-approach. For component integration into OMS3, 
framework-specific JAMS data types for component exchange-data were substituted with 
generic native data types and super class dependencies became obsolete. Moreover, 
JAMS-specific annotations had to be converted into more generic OMS3 annotations. The 
overall migration process was automated using scripts with regular expression string 
substitutions that automated roughly 90% of the JAMS to OMS3 conversion. The 
remaining 10% of the conversion was performed manually, consisting mainly of 
transforming JAMS model XML representations into Java code and DSL simulation files, 
introducing classes for complex (i.e., spatial) types such as hydrologic response units and 
stream reaches, and finally optimizing HRU processing for parallel execution under 
OMS3. Since JAMS and OMS are closely related with respect to component 
conceptualization and implementation, the migration process was limited to the source 
statement level, i.e., no structural change in components was necessary. 

The OMS3/J2K-S hydrological model contains components for climate data 
regionalization, evapotranspiration, interception, snow accumulation and ablation, water 
and N balance in the unsaturated zone, water and N balance in the saturated zone, surface 
runoff and N concentration, and explicitly computed lateral surface and subsurface 
water/N routing and stream channel/river network flood routing in catchments (Krause et 
al. 2006). The N dynamics model contains components that are mainly adopted from the 
Soil Water Assessment Tool (SWAT) model (Arnold 1998) and coupled to the hydrologic 
components (Figure 2). The N dynamics modules include process components for 
simulating soil temperature, crop growth and N turnover according to Neitsch et al. (2002) 
and Williams et al. (1984) with some minor adaptations. Five different soil N pools are 
considered in order to allow modeling of different N inputs (e.g., mineral fertilizer, organic 
manure) and N transformations between these pools. N flows are modeled by a dynamic 
crop growth module and subsequent N uptake of plants (residues and yield), as well as 
through denitrification and volatilization. The land use management routines include 
modules for fertilizer management, tillage, and harvest operation (Krause et al., 2009). 

Figure 2. OMS3/J2K-S science component structure (adapted from Krause et al., 2009). 

After calculation of HRU surface and subsurface runoff and N dynamics, runoff and 
N routing is performed based on topological interconnections of the single HRU polygons, 
i.e., water and N flows are passed to a receiving HRU defined by its topological position 
(derived by GIS analysis), or to a receiving stream reach if the HRU is connected to one. 
Runoff and N routing inside the stream network is simulated by connecting the reach 
storages, receiving the runoff and N from the topologically connected HRUs by a 
hierarchical storage cascade approach, and calculating flow velocity inside the stream 
channel using the Manning-Strickler equation. The outflow of each specific stream reach 
is then transferred as inflow to the connecting downstream reach. 
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4.  MATERIALS AND METHODS 
 

The Cedar Creek Watershed (CCW) is located within the St. Joseph River Basin in 
northeastern Indiana, USA (41o10’10’’ to 41o32’38’’ N and 84o53’49’’ to 85o19’44’’W). 
The CCW drains two 11-digit hydrologic unit code (HUC) watersheds, the Upper 
(04100003080) and Lower Cedar (04100003090), covering an area of approximately 700 
km2. The DEM data used in this study were obtained from the USGS at 10-m elevation 
resolution, 1/3 arc second, and a map-scale of 1:24,000 quadrangle sheet. The average land 
surface slope of the watershed is 2.6%, and the predominant soil textures are silt loam, 
silty clay loam, and clay loam with six STATSGO soil associations represented. The 
annual mean precipitation in the watershed area from 1989 to 2005 was 962 mm. For this 
study, a land use map from the National Agricultural Statistics Survey (NASS) was used 
collected between the dates of April 29, 2001 and September 5, 2001 with an approximate 
scale of 1:100,000 and a ground resolution of 30 x 30 m. Both standard ArcGIS 9.2 (ESRI, 
2008) geoprocessing tools (e.g., overlay) and customized Avenue scripts for deriving HRU 
flow connectivity were used for HRU delineation which consisted of partly reclassifying 
and combining (by overlay analysis in ArcGIS 9.2) DEM topographical parameters (e.g., 
elevation, slope, aspect) with STATSGO soil and NASS land use GIS layers. The 
delineation of HRUs for the entire CCW resulted in 4,174 HRU polygons featuring areas 
between 0.02 to 2.5 km2. Figure 3 shows the stream channels and HRU polygons of the 
CCW, together with topological connections as red arrows draped over the HRU polygons.  

The OMS3/J2K-S simulation period in this study was 1997 through 2005. Daily 
precipitation, solar radiation, wind speed, relative humidity, and maximum/minimum air 
temperatures for these years were obtained from the NOAA National Climate Data Center 
(NOAA-NCDC, 2004) for the Garret and Waterloo weather stations within the CCW. 
Regionalization pre-processors in OMS3/J2K-S automatically distributed the climate data 
from the two gauges over the watershed. Historical measured data for Cedar Creek stream 
flow Gauge 04180000 (4113’08”N, 8504’35”W) were supplied by the USGS for the 9-
year period from January, 1997 to December, 2005.  Initial model parameter values were 
taken from simulation studies successfully applying J2K-S to watersheds in Germany and 
elsewhere exhibiting physical characteristics (e.g., topography, size, and agricultural land 
use) very similar to the CCW.  

Figure 3. Routing topology with overland flow routing vectors for the CCW including an 
expanded view of flow routing vectors with HRU and stream channel flow linkages. 

Nash-Sutcliffe Efficiency coefficient (ENS) and percent bias (PBIAS) statistical 
evaluation coefficients were used to evaluate the overall correspondence of simulated 
output to measured values. ENS indicates how well the plot of observed versus simulated 
values fits a 1:1 line. PBIAS is a measure of the average tendency of the simulated flows to 
be larger or smaller than their observed values. The optimal PBIAS value is 0.0; a positive 
value indicates a bias toward overestimation, whereas a negative value indicates a model 
bias toward underestimation. In this study, ENS and PBIAS values were computed for both 
daily and average monthly stream flow. 
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5.  RESULTS AND DISCUSSION 
 

Historical measured data for Cedar Creek stream flow from the USGS for a 9-year 
period from January, 1997 to December, 2005 at Gauge 04180000 (4113’08”N, 
8504’35”W) near Cedarville, IN was compared with daily and average monthly 
OMS3/J2K-S noncalibrated stream flow. In general, the OMS3/J2K-S model 
underestimated stream flow on a daily time-step as shown in the 1:1 plot in Figure 4 where 
all data points are included for the 9-year simulation period. The negative value for PBIAS 
(-18.55%) indicates that the model underestimated stream flow, and the ENS value (0.46) is 
considered unsatisfactory according to Moriasi et al. (2007) (although the PBIAS value is 
acceptable since it is under 25%).  

Figure 4. Daily CCW stream flow 1:1 plot of OMS3/J2K-S initial parameter set 
simulated values versus observed (Jan. 1997 to Dec. 2005). 

Average monthly observed and OMS3/J2K-S simulated stream flow from January, 
1997 to December, 2005 are presented in Figure 5. This figure shows that the trend in 
simulated average monthly stream flow followed the observed values much more closely 
than the simulated daily stream flow results. Furthermore, it is extremely easy to discern 
that simulated average monthly stream flow in Figure 5 was significantly underestimated 
for nearly all of the 9-year simulation period. The ENS coefficient increased to 0.60 for 
average monthly stream flow (as compared to 0.46 for daily stream flow) with the average 
monthly PBIAS value remaining essentially the same as daily stream flow. The initial 
uncalibrated simulation results exhibited a rather large overprediction of ET on the 

watershed (data not shown) in addition to a systematic underprediction of stream flow  

ENS = 0.46 
PBIAS = -18.55% 

1:1 line 

R2 line 
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Figure 5. Monthly CCW stream flow for observed and OMS3/J2K-S initial parameter 
set simulated values (Jan. 1997 to Dec. 2005). 

across all time scales. Land use on the CCW is quite diverse, furthermore, the simplistic 
representation of evapotranspiration dynamics in OMS3/J2K-S may not adequately 
capture complex soil-water-plant interactions occurring on the watershed. Therefore, the 
soilLinRed coefficient was increased. This coefficient controls the partitioning of PET to 
AET, i.e., increasing soilLinRed decreases the amount of PET partitioned to AET. In 
addition, an attempt was made to account for areas of tile drainage on the Cedar Creek 
Watershed. A logical way to represent the effects of tile drainage in OMS3/J2K-S was to 
increase both the amount of water available in the LPS and the rate of outflow from LPS. 
Therefore, the soilDistMPSLPS and soilOutLPS coefficients were both decreased. 
Decreasing soilDistMPSLPS increases the amount of infiltrated water available for LPS; 
decreasing soilOutLPS increases the outflow rate from LPS. These adjustments 
approximate the more rapid removal of water from tile drains than what would normally 
be expected with the absence of tile drainage.  All OMS3/J2K-S CCW simulations were 
then re-run using the modified values for soilLinRed, soilDistMPSLPS, and soilOutLPS.  

All statistical evaluation coefficients for daily stream flow improved substantially for 
the modified parameter set, in particular, the ENS coefficient increased from 0.46 to 0.58 
and PBIAS decreased from -18.55% to -8.59%. The OMS3/J2K-S model still 
underestimated stream flow on a daily time-step (as shown in the 1:1 plot in Figure 6). The 
ENS coefficient for average monthly stream flow improved for the modified parameter set 
(ENS = 0.68) as compared to the initial parameter set (ENS = 0.60). Average monthly 
improvement was of similar magnitude as the improvement in daily stream flow. Average 
monthly observed and OMS3/J2K-S simulated stream flow from January, 1997 to 
December, 2005 for the modified parameter set are shown in Figure 7. This figure shows 

 
Figure 6. Daily CCW stream flow 1:1 plot of OMS3/J2K-S modified parameter set 

simulated values versus observed (Jan. 1997 to Dec. 2005). 

ENS = 0.58 
PBIAS = -8.59% 

1:1 line 

R2 line 
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Figure 7. Monthly CCW stream flow for observed and OMS3/J2K-S modified parameter 

set simulated values (Jan. 1997 to Dec. 2005). 
that the trend in simulated average monthly stream flow for the modified parameter set 
followed the observed values much more closely (both in trend and in better estimation of 
peak stream flow events) than the simulated monthly stream flow results for the initial 
parameter set shown in Figure 5. Even with stream flow prediction improvements using 
the modified parameter set, OMS3/J2K-S underestimated stream flow at all time scales. 
Additional possible explanations for the underprediction may be attributed to using 
inappropriate values for recession coefficient parameter that govern simulated flow 
through the shallow and deep groundwater storage. Other studies (e.g., Krause, 2002) have 
shown the OMS3/J2K-S hydrologic model to be particularly sensitive to the recession 
coefficients used for groundwater storage calculations. Underprediction of monthly stream 
flow may be due to the lack of measured data for solar radiation and wind speed which are 
needed to estimate potential ET based on the Penman-Monteith equation in OMS3/J2K-S. 
Furthermore, the lack of available measured ET data for the study period makes it difficult 
to validate simulated ET results. Under or over estimates of ET could thereby affect the 
overall water balance, particularly during the summer months when ET demand is higher. 
Simulations for N loadings on each HRU and runoff N loading to Cedar Creek were also 
performed; however, the OMS3/J2K-S N dynamics sub-model is still undergoing testing 
so a formal statistical evaluation of this component was not performed. Figure 8 shows N 
pools simulated by OMS3/J2K-S averaged across all HRUs for the CCW. 
 

 

Figure 8. N pools simulated by OMS3/J2K-S averaged across all HRUs for the CCW. 
 

In summary, we chose to evaluate noncalibrated stream flow results considering that 
OMS3/J2K-S was developed for applications on ungauged watersheds. More importantly, 
however, is the potential for formal model calibration to introduce a level of bias that 
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could ultimately mask or eliminate the impact of the simulated runoff generation 
processes. 
 
6.  CONCLUSIONS 
 

The long-term continuous hydrologic simulations of OMS3/J2K-S performed 
reasonably well in predicting daily, monthly, and annual average flows on the Cedar Creek 
(Gauge 04180000) near Cedarville, IN. For initial and modified parameter sets, 
OMS3/J2K-S underpredicted the majority of the peak flows during the 9-year simulations 
of the Cedar Creek Watershed, with some individual storm events underpredicted by many 
orders of magnitude. Despite the underprediction, the majority of the evaluation statistics 
for ENS and PBIAS for both uncalibrated and manually adjusted parameter sets were 
within the range of other evaluation results reported in the literature for various watershed 
models such as SWAT. It was unclear whether OMS3/J2K-S needs enhancements in storm 
event simulations for improving high and peak flow predictions, or whether the 
distribution of rainfall over the entire watershed was misrepresented due to the use of only 
two climate stations. 

The results show that the OMS3/J2K-S prototype watershed model was able to 
reproduce the hydrological dynamics of the Cedar Creek Watershed with sufficient 
quality, and should serve as a foundation on which to build a regionalized model for the 
CEAP initiative that is able to quantify the impact of conservation practice implementation 
on water quantity and quality at the watershed scale.  In particular, the topological routing 
scheme employed by OMS3/J2K-S (thus allowing the simulation of lateral processes 
important for the modeling of runoff concentration dynamics) is much more physically 
based and robust than quasi-distributed routing schemes used by other watershed scale 
natural resource models (e.g., SWAT).  The largest advantage of the OMS3/J2K-S routing 
approach is a process-oriented view of spatial watershed characteristics that drive 
hydrological behavior.  With a fully-distributed routing concept (Figure 3), the dynamic 
spatially distributed character of the OMS3/J2K-S watershed model that separates it from 
other watershed models (e.g., SWAT) becomes apparent. Furthermore, higher spatial 
resolution in combination with the lateral transfer of water between HRUs and stream 
channel reaches can be considered a very important advancement (in hydrological 
modeling) towards deriving suitable conservation management scenarios for CEAP. 
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