
Using the object modeling system for hydrological

model development and application

S. Kralisch, P. Krause, O. David

To cite this version:

S. Kralisch, P. Krause, O. David. Using the object modeling system for hydrological model
development and application. Advances in Geosciences, European Geosciences Union, 2005, 4,
pp.75-81. <hal-00296816>

HAL Id: hal-00296816

https://hal.archives-ouvertes.fr/hal-00296816

Submitted on 9 Aug 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00296816


Advances in Geosciences, 4, 75–81, 2005
SRef-ID: 1680-7359/adgeo/2005-4-75
European Geosciences Union
© 2005 Author(s). This work is licensed
under a Creative Commons License.

Advances in
Geosciences

Using the object modeling system for hydrological model
development and application

S. Kralisch1, P. Krause1, and O. David2

1Friedrich-Schiller-University Jena, Institute for Geography, Jena, Germany
2Colorado State University, Fort Collins, CO, USA

Received: 1 August 2004 – Revised: 1 November 2004 – Accepted: 15 November 2004 – Published: 9 August 2005

Abstract. State of the art challenges in sustainable manage-
ment of water resources have created demand for integrated,
flexible and easy to use hydrological models which are able
to simulate the quantitative and qualitative aspects of the hy-
drological cycle with a sufficient degree of certainty. Exist-
ing models which have been de-veloped to fit these needs are
often constrained to specific scales or purposes and thus can
not be easily adapted to meet different challenges. As a so-
lution for flexible and modularised model development and
application, the Object Modeling System (OMS) has been
developed in a joint approach by the USDA-ARS, GPSRU
(Fort Collins, CO, USA), USGS (Denver, CO, USA), and the
FSU (Jena, Germany). The OMS provides a modern mod-
elling framework which allows the implementation of single
process components to be compiled and applied as custom
tailored model assemblies. This paper describes basic prin-
ciples of the OMS and its main components and explains in
more detail how the problems during coupling of models or
model components are solved inside the system. It highlights
the integration of different spatial and temporal scales by
their representation as spatial modelling entities embedded
into time compound components. As an exam-ple the imple-
mentation of the hydrological model J2000 is discussed.

1 Introduction

With the implementation of the European Water Framework
Directive (WFD – European Union, 2000) prognostic mod-
elling for sustainable management of water resources has be-
come even more important than it was before. The goals set
up by the WFD require a stronger integrative and multidisci-
plinary approach than usually practiced in the last decades.
In addition to quantitative and qualitative hydrological is-
sues, socio-economic and legislative objectives must be con-

Correspondence to:S. Kralisch
(sven.kralisch@uni-jena.de)

sidered to find the best solutions for maintenance or improve-
ment of water quality in European water bodies.

Although such an interdisciplinary and holistic approach
is the most promising way to reach the goals set up by
the WFD, it also introduces new problems, which have to
be solved in advance. The most obvious problem is that
each discipline involved in the development of strategies for
sustainable management of water resources uses their own
methods and tools for prognostic simulation and modelling
of the single processes of the water cycle throughout Europe.
This is true not only from the multidisciplinary standpoint
but also from a regional point of view. Scientists from one
discipline in one part of Europe often use different models
for the same purpose than other scientists in other parts of
the continent because the constraints and environmental cir-
cumstances are different.

The most significant differences between the single mod-
els or modelling systems applied in Europe and worldwide
are the specific model cores which simulate the single pro-
cesses. On the other hand, all models or modelling sys-
tems have systematic functionalities (e.g. data in- and output)
which are essentially common for all models even if they had
been implemented in different ways.

For future proof model development and application, a
modular approach which divides the systematic routines
from the scientific parts is the most promising approach.
Such an approach should provide the basic functionality for
data in- and output, application and communication of the
single components as well as an application programming in-
terface (API) for the implementation of the scientific meth-
ods in the form of encapsulated programme modules. The
most relevant benefit of such a framework for model devel-
opers would be to enable them to concentrate on only the
implementation of most suitable methods and always be con-
fronted with a familiar interface and modelling environment.

The Object Modeling System (OMS) (David et al., 2002),
developed at the Friedrich-Schiller-University in Jena, Ger-
many and at the USDA-ARS, Great Plains Systems Re-
search Unit in Fort Collins, CO, USA is such a modelling



76 S. Kralisch et al.: Hydrological model development and application

Fig. 1. Principal layout of the Object Modeling System OMS.

framework. This paper deals with its introduction, the cur-
rent development and implementation of suitable programme
modules.

2 The Object Modeling Systems OMS

The basic OMS concept is the representation of all system
and model components as independent modules. These mod-
ules are coupled by standardised software interfaces. In
order to achieve maximum platform independence, OMS
was implemented in JAVA on top on the NetBeans platform
(http://www.netbeans.org). NetBeans is an open source soft-
ware which provides common desktop applications require-
ments like menus, document management, and settings for
the user or developer. Extension of the OMS by new system
components is guarantied through integration into the Net-
Beans context because of the flexible and generic interface
of this platform. The principal layout of the Object Mod-
elling System is shown in Fig.1. The modules can be divided
into system and scientific components as shown. The system
components provide a Model Builder with single scientific
modules that can be assembled to provide a running model.
The model itself can then be executed inside the Runtime
Environment. The result is a modular system whose com-
ponents can be divided into system components and model
components.

2.1 OMS system components

All functions which are needed for the modelling system
are implemented by the system components. System com-
ponents handle all coupling and execution of model compo-
nents. The following main system components can be iden-
tified.

– System core: The system core provides basic function-
ality for all other components and forms the runtime en-
vironment for model as well as component development
and execution. The system core implements all the data
types that can be used by model components. Besides
simple data objects a number of more complex objects
and components are implemented. As an example, ob-
jects covering time issues (e.g., the OMSCalendar) im-
plement specific time steps for model application and
methods for time step management. Other objects, like
the OMSComponents are used as basic classes for the
implementation of model components. They can be un-
derstood as containers, which have to be filled by the
model or module developers by the implementation of
own methods or processes. The interaction and commu-
nication of such modules with others is done by stan-
dardised functions which hook the modules into their
specific context. Such basic functionalities provided
by these containers offers a solid basis for consistent
and sound module development and allow the module

http://www.netbeans.org


S. Kralisch et al.: Hydrological model development and application 77

Fig. 2. Application of compound components for representation of temporal and spatial contexts.

developer to concentrate on the process implementation
without thinking too much about system functions.

– Model builder : The model builder supports the assem-
blage and configuration of complex models from single
model components with an easy to use graphical user
interface. This interface offers capabilities for the map-
ping of component output parameters to input parame-
ters of subsequent components.

With the model builder different model configurations
can be stored and managed. Once a model has been as-
sembled and configured inside the model-builder it can
be easily passed to other users or executed in other com-
puting environments.

– Update center: The update center is a standard Net-
Beans component and provides functionality for easy
update and download of existing OMS modules. All
developers of OMS model components can encapsulate
their work within NetBeans modules. By offering them
via the Internet they can make their work available to
other OMS users who can then retrieve and install them
through the use of the update center. OMS-tailored Net-
Beans modules include not only the model components
themselves, but they can also provide additional data
like parameter-sets and documentation.

All model components can be supplied with additional
signature keys and licensing information to protect them
against modification without permission and to secure
the property rights of the developer.

– User interface components: The OMS offers well de-
signed user interface (UI) components which provide
a number of visualization features for developers and
users. As an example, the 2d plot component offers mis-
cellaneous 2d representations for modelling results in
form of graphs or xy-plots. Additional UI components
can easily be added by implementing them as NetBeans
modules and integrating them into the framework.

2.2 OMS model components

The OMS system components are complemented by the
OMS model components which form the building blocks for
all models created within the framework. For each model
component the following properties are prototyped by the
OMS and have to be implemented by the developer:

– The model component implements four common meth-
ods: register(), init(), run()and cleanup(). The reg-
ister() method comprises commands and functionality
that needs to be executed once during the model ini-
tialization stage, like loading native libraries containing
model functionality. Theinit() method includes code to
be executed at the first invocation of a module, mostly
for presetting parameters to initial values. Code con-
tained in therun() method is executed at each module
invocation and contains the real functionality, e.g. the
Penman-Monteith equation for calculation of the poten-
tial evapotranspiration. At the end of model execution,
thecleanup()method of each model component is exe-
cuted in order to free resources used by the component.

– The read and write access of each variable is super-
vised by the OMS model component. To secure con-
sistency during runtime, each variable with read access
must have been written by a preceding module during
the model execution. With this information, the runtime
system is able to synchronise variable values between
the executions of two successive model components and
thus guarantee a harmonised data flow.

Whereas the model components themselves are imple-
mented as Java classes, they may include calls to functions
from native libraries using the Java Native Interface (JNI).
Thus, a large amount of pre-existing process implementa-
tions can be accessed from the OMS with minor reprogram-
ming efforts.

In addition to the model components for the implementa-
tion and execution of process representations, OMS provides



78 S. Kralisch et al.: Hydrological model development and application

Fig. 3. Representing spatial model entities as OMSEntity objects.

specialised compound components. These work as contain-
ers for other model components and can be used to represent
hierarchical structures. Each compound component provides
an internal iterator which controls if and how the contained
elements are enumerated. By modifying this iterator, arbi-
trary control structures like conditional or iterated execution
of contained components can be realised. In case of a condi-
tional operator the representing compound component sim-
ply decides wether or not the contained components are ex-
ecuted – dependent on some external condition checked by
the component. For example, if the compound component
represents a while-operator, the compound component con-
secutively iterates over all contained components as long as
a specific external condition is valid. With these compound
components, the runtime behaviour of the models can be very
effectively structured and implemented.

Because of the representation of temporal or spatial con-
texts in many models, the iterated execution of model com-
ponents is of special interest. Therefore predefined com-
pound components for representation of temporal contexts
(TimeCompoundComponent) and spatial contexts (Spatial-
CompoundComponent) are already implemented in OMS.
TimeCompoundComponents (TCC) own a specific attribute
that represents a user defined time interval and step size.
With such data, TCC can create discrete points in time. On
the other hand, SpatialCompoundComponents (SCC) repre-
sent discrete points in space by explicitly listing predefined
spatial entities like Hydrological Response Units (HRU) or
raster cells. Figure2 shows an example of the execution of
model components within a TCC on the left side. Here the
process modules A to D are executed iteratively inside a time
loop provided and controlled by the TCC. On the right side
of Fig. 2, a SCC is integrated into the TCC. Again the mod-

ules A to D are executed iteratively but now across time and
space. This example also shows how compound components
can be assembled in a hierarchical manner.

2.3 Representing space

In order to represent spatial model entities, the system core
uses the data type OMSEntity. OMSEntities work as an
abstract container for arbitrary attributes of spatial entities.
These data which can vary for each OMSEntity object are
stored in tables that map attribute names to their respective
values. With this approach attribute sets of spatial model en-
tities can easily be expanded if additional data are provided
by new model components or external sources. Figure3
shows an example of how spatial model entities (polygons
or raster cells) can be obtained and represented as OMSEn-
tity objects. The figure shows a basin with elevation and soil
information. Each entity has a unique ID and a set of eleva-
tion and soil-type values. Specific getter and setter functions
of the OMSEntity can be used to access the OMSEntity’s
attribute set. This attribute set is then used during model exe-
cution to provide the process modules with the required spa-
tially distributed information.

When a model is assembled with the model builder, the
single process modules can extend the OMSEntity set by pro-
cess specific state variables and attributes. For example, a
soil water process module with two different soil storages
extends the attribute set of each OMSEntity object by two
variables representing the storages during initialisation. Ad-
ditionally, specific getter and setter routines are set up to re-
trieve or change the current state of these storages according
to the running processes during the model execution.



S. Kralisch et al.: Hydrological model development and application 79

The idea of representing spatial entities as abstract con-
tainers for arbitrary data opens the possibility of implement-
ing model components which are not bound to a specific
spatial discretisation (e.g., polygons or raster cells). Further-
more, they can work on OMSEntity data objects without con-
sideration or knowledge of the underlying discretisation con-
cept. This feature, of course, cannot solve problems of pro-
cess validity and compatibility on specific spatial and tempo-
ral scales, which still have to be considered by the module or
model developer.

3 Application of the OMS

In order to test the described system against an existing
model, a number of model components have been imple-
mented. The basis for these components was provided by
the J2000 model (Krause, 2001, 2002) which is a concep-
tual fully distributive hydrological modelling system. The
J2000 uses the topological HRU approach for catchment dis-
cretisation and implements the single processes of the hy-
drological cycle (ETP, snow, soil water, groundwater, lateral
routing between the HRUs and channel routing) as encap-
sulated process modules. Therefore the J2000 already pro-
vides a number of cleanly implemented process descriptions
written in Java. These were transferred into OMS model
components with only minor adjustments in the initialisation
and cleanup routines. Additionally, readers for transferring
the J2000 parameter files (which describe the spatial entities
J2KParaReader) and for the input data files (which contain
the driving variables xxxDataInput) have been integrated into
the OMS. Figure4 shows the J2000 model setup inside the
OMS Model Builder.

During initialisation within the OMS/J2000 model, the
J2KParaReader component reads the J2000 two spatial
model entity types (Hydrological Response Units and river
reach units) together with their describing parameters from
external data sources (files). The objects descriptions are
then translated into two lists of OMSEntitiy objects, one for
the HRUs and one for the river reaches. These lists can then
be accessed by two different Spatial Compound Components
which are used to create iterators over the lists. The attributes
of the single objects in the OMSEntitiy lists are then updated
by the process modules with additional attributes and state
variables together with getter and setter routines to assess
their content. Both SCC are then integrated into the tem-
poral context of one TCC which iterates in daily time steps
during model execution.

During model application for each iteration step of the
TCC, the two SCCs execute a number of different process
modules embedded in their context in a sequential order
(Fig. 4). During the execution of the single process modules,
the state of the spatial objects passed to them are changed
according to the process implementation inside the modules
and the updated states are given back to the system. An ex-
ample of the run routine of a module implementing the in-
terception process is shown in Fig.5. In the beginning, the

Fig. 4. Composition of J2000 components with the model builder.

relevant HRU attributes are passed to local variables. Next,
the process implementation follows and is terminated at the
end by the return of the updated local variables back to the
HRU object. Preliminary test runs of the OMS/J2000 model
show that the system produces nearly identical results as the
original J2000 model. The differences are mostly determined
by different treatment of the input variables and slightly dif-
fering parameter sets.

4 Conclusion and outlook

This implementation of a complete hydrological model into
the OMS has shown the suitability of the system for model
development and application. For the integration of the
J2000 modules and their distribution, concept spatial entities
have been developed and integrated into the OMS.



80 S. Kralisch et al.: Hydrological model development and application

public class IntcDS extends OMSComponent {

transient OMSTimeInterval time;
transient OMSEntitySet es;

public int run() {

//pass hru variables to local variables
OMSEntity currentEntity = this.es.current;
int julday = (int) time.current.getDayInYear();
double[] LAIArray = (double[])currentEntity.getAttribute("LAI");
double LAI = LAIArray[julday-1];
double area = currentEntity.getDoubleAttribute("area");
double dailyRain = currentEn-
tity.getDoubleAttribute("dailyRain");
double dailyTmean = currentEn-
tity.getDoubleAttribute("dailyTmean");
double dailyPetp = currentEn-
tity.getDoubleAttribute("dailyPetp");
double dailyAetp = currentEn-
tity.getDoubleAttribute("dailyAetp");
double deltaETP = dailyPetp - dailyAetp;
double actIntcStorage = currentEn-
tity.getDoubleAttribute("actIntcStorage");
double throughfall = 0;
double dailyIntc = 0;

//calculate interception parameters
double alpha = 0;
if(dailyTmean < -2.0)

alpha = 0.5;
else

alpha = 0.2;

double maxIntcCap = (LAI * alpha) * area;

if(actIntcStorage > maxIntcCap) {

throughfall = actIntcStorage - maxIntcCap;
actIntcStorage = maxIntcCap;

}

double deltaIntc = maxIntcCap - actIntcStorage;
if(deltaIntc > 0) {

double saveRain = dailyRain;
if(dailyRain > deltaIntc) {

actIntcStorage = maxIntcCap;
dailyRain = dailyRain - deltaIntc;
deltaIntc = 0;
dailyIntc = (saveRain - dailyRain);

} else {

actIntcStorage = (actIntcStorage + dai-
lyRain);

dailyIntc = dailyRain;
dailyRain = 0;

}

} if(deltaETP > 0) {

if(actIntcStorage > deltaETP) {

actIntcStorage = actIntcStorage -
deltaETP;

dailyAetp = dailyAetp + deltaETP;
deltaETP = 0;

} else {

deltaETP = deltaETP - actIntcStorage;
dailyAetp = dailyAetp + (dailyPetp -

deltaETP);
actIntcStorage = 0;

}

}

//return hru variables from local variables
currentEntity.setDoubleAttribute("throughfall",
throughfall);
currentEntity.setDoubleAttribute("netPrecip",
throughfall + this.dailyRain);
currentEntity.setDoubleAttribute("dailyAetp",
dailyAetp);
currentEntity.setDoubleAttribute("actIntcStorage",
actIntcStorage);
currentEntity.setDoubleAttribute("dailyIntc",
dailyIntc);

return 0; }

Fig. 5. Example of the run routine of a OMS/J2000 process module.



S. Kralisch et al.: Hydrological model development and application 81

Great care was taken to implement the OMSEntities as flex-
ible and open as possible to guarantee their reusability for
other process modules from other models. During the refac-
toring of the J2000 modules for the use inside OMS, only mi-
nor parts had to be adapted to ensure proper module installa-
tion and initialisation. The original process implementations
were left untouched. Test runs of the OMS/J2000 implemen-
tation showed nearly identical results when compared to the
original model results.

The comparison of the OMS/J2000 against the original
implementation also showed that the OMS performance is
much slower than the original implementation. This lack of
performance is related to the flexibility gained by the use of
dynamic attribute sets for model entities inside the OMS. To
keep them updated and consistent during model execution,
a lot of time consuming computing, like type casting, has
to be performed. The optimisation of model performance
and elimination of time consuming operations during model
execution therefore forms the subject of ongoing research.
A possible solution could be the utilization of alternative
data structures for storing entity attributes. For example. the
GNU Trove library (http://trove4j.sourceforge.net/) provides
a fast, lightweight implementation of the Java Collections
API to realize this.

Edited by: P. Krause, S. Kralisch, and W. Flügel
Reviewed by: anonymous referees

References

David, O., Markstrom, S. L., Rojas, K. W., Ahuja, L. R., and
Schneider, I. W.: The Object Modeling System, in: Agricul-
tural System Models in Field Research and Technology Transfer,
edited by: Ahuja, L., Ma, L., Howell, T. A., Lewis Publishers,
CRC Press LLC, 317–331, 2002.

European Union (2000): Directive 2000/60/EC of the European
Parliament and of the Council of 23 October 2000 establishing
a framework for Community action in the field of water policy;
Official Journal L 327, p. 0001–0073, 2000.

Krause, P.: Das hydrologische Modellsystem J2000 – Beschreibung
und Anwendung in großen Flußgebieten (The hydrological mod-
elling system J2000 – Documentation and application in large
river basins); Schriften des Forschungszentrums Jülich, Reihe
Umwelt/Environment, Band 29, 2001.

Krause, P.: Quantifying the impact of land use changes on the water
balance of large catchments using the J2000 model; Physics and
Chemistry of the Earth, 27, 663–673, 2002.

http://trove4j.sourceforge.net/

