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Abstract. The Object Modeling System (OMS) is a framework that facilitates the development of 
customized models from a standardized library of science, data and utility modules, as well as their 
testing, application and deployment.  It is an interagency project between the USDA-ARS, USGS, 
and USDA-NRCS to implement object-oriented modeling principles that achieve code reusability and 
greater ease of maintenance.  This paper demonstrates the development of a rangeland forage 
component in OMS using two approaches: (1) wrapping of an existing non-object-oriented forage 
module written in FORTRAN 90; and (2) creating a fully object-oriented forage module written in 
Java.  The first approach demonstrates reuse of legacy code from an existing model while the 
second approach demonstrates the development of a Java OMS component.  Features of OMS 
relevant to component development are also highlighted.  OMS can leverage previous investments in 
legacy science modules and facilitate the development of component-oriented models within a 
framework that maximizes code reusability and ease of maintenance.  
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Introduction 
Multidisciplinary environmental simulation models integrate approaches from a wide range of 
disciplines such as hydrology, soil science, plant physiology, ecology, and others. Usually, 
expertise in these fields can be found across research agencies, universities and other 
institutions. Integrating a complex model from different parts becomes not only a scientific 
challenge but a technical implementation and social engineering challenge as well. That issue 
becomes more pressing under the current pace of model development with development cycles 
being reduced drastically. The conventional approach of creating a large simulation model in a 
monolithic structure is bound to fail for a modeling project that is interdisciplinary and requires 
contributions from distributed modeling groups. 

The current trend in software engineering favors a short-term development process where large 
and complex applications are built using a series of smaller parts, referred to as components. 
Component technology has been the most sustainable step in the evolution of software design 
and development over the past years. It has been adopted for simulation model development for 
different modeling applications and frameworks (Argent, 2004). 

What is a model component?  It is a model application-level software unit that is ideally 
developed for a specific purpose and not for a single model application. Components in general 
are self-contained, large-grained software entities. They are modeling units that are context-
independent both in the conceptual and technical domain. A modeling component usually 
addresses one modeling concept at a certain level of complexity. Some examples are a 
precipitation, erosion, or a plant growth component. Technically a modeling component 
represents an executable code which has enough information bundled with it to explain itself to 
model builder tools with regards to its purpose, scale, capabilities, structure, data requirements, 
and other model application-relevant properties. 

The objective of this paper is to give an overview of components in the Object Modeling System 
(OMS; David et al., 2002) and demonstrate the development of a rangeland forage component 
in OMS using two approaches: (1) wrapping of an existing non-object-oriented forage module 
written in FORTRAN 90; and (2) creating a fully object-oriented forage module written in Java.  
The first approach demonstrates reuse of legacy code from an existing model while the second 
approach demonstrates the development of a Java OMS component. 

The Object Modeling System 
The Object Modeling System is computer software that helps to (i) create and test scientific 
simulation components, (ii) package components, (iii) assemble components into a model 
application, and (iv) apply a model against datasets and analyze model outputs graphically. 
OMS supports the management lifecycle for all modeling elements. 

OMS utilizes Component Oriented Programming (COP) for simulation models (Ahuja et al., 
2005). With respect to COP, modeling components are depicted by some main characteristics: 

• OMS embraces the JavaBeans component standard. JavaBeans is the component 
architecture for the Java platform. It defines a standard for the structure of Java classes, 
which can be used as pluggable components in application builder tools. 

• OMS components have meta data. Meta data is used to describe components with 
respect to their modeling domain. Component data is described in terms of data types, 
data units, constraints, and default values. Components, in general, have attached meta 
data for information about the component such as description, scales of application, 
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literature references, author, version, etc.  For a more detailed discussion of meta data 
in the OMS, the reader is referred to David et al. (2004). 

• OMS components are implemented in the Java programming language. However, OMS 
provides tools to create Java mediation components for existing simulation sources 
written in other languages such as FORTRAN. This feature helps integrate proven 
legacy code into OMS in a transparent way. 

 

 
Figure 1.  Schematic of OMS implementation for natural resource modeling. 

 

Figure 1 shows the OMS implementation schematic for natural resource modeling currently 
implemented at the ARS Great Plaint System Research Unit, Fort Collins in collaboration with 
the NRCS Information Technology Center, Fort Collins. The building blocks for customized 
models are contained in a library of science, control, and database components (OMS 
components). There are currently several parallel efforts to build and integrate hydrology, 
erosion, range-livestock, nutrients, and other components for several research projects. 

This paper focuses on the development of a forage growth component in OMS as an example. 
The reader is referred to David et al. (2002) and Ahuja et al. (2005) for more comprehensive 
descriptions of the OMS. 

OMS Components 
A component representing a certain conceptual function in a simulation is a building block for 
each model. A hydrological model for example usually needs components for handling 
input/output, has components representing processes of a hydrological system such as 
precipitation, interception and runoff, and has to implement general data-processing functions 
such as reading climate data or parameter sets. The key for a proper model design based on 
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components is a clean "separation of concerns" in a model. Components for a model hosted in 
OMS have to provide a certain aspect. What qualifies a part of a model as a component? 

1. A component has a specific and usually single conceptual function in a model. It 
represents a physical process, a management action, a data gathering part, or the 
presentation of results to the user interface. Such functions need to be identified and 
separated from each other. Each of these aspects will result in a component. 

2. An identified component can be fully described with regards to its function, data 
requirements and data offerings. Therefore, the specification and subsequent 
implementation of a component will be done with respect to its anticipated simulation 
context, but a tight dependency to this context is avoided. Later in the process of 
development, the component will be tested standalone using a test bed environment to 
prove its correct functioning. 

3. The component is general enough to be used in other models and applications. So 
designing and implementing it will eventually require more work at the beginning, but will 
definitely pay off when it gets reused and re-purposed later. 

By analyzing simulation models a classification of potential components can be made. 

• Scientific components implement methods and equations to estimate some 
physical phenomenon. Examples would be a component estimating amount of 
water evaporated from a certain land cover, a component predicting the soil loss 
due to wind erosion, etc. Such components usually apply some mathematical 
function.  

• Scientific utility components support the analysis of models by providing 
statistical analysis methods such as descriptive statistics, frequency analysis, 
etc. Distribution generator components are used to provide data to scientific 
components. 

• Control components are responsible for managing the execution of a model. A 
Runge-Kutta Integration component, a time management, or a convergence 
criteria component are examples of this. 

• Data Input/Output Components provide data to other components in a 
simulation model. Such components could handle data transfer from databases 
or files to the model. Visualization components like graphs or spreadsheets also 
fall under this category. 

 

From the technical perspective the parts of a component in OMS may be classified into two 
main categories. 

• Component behavior is specified by Java Interfaces. The OMS API offers several 
interface types that support different component types. There can be stateless and 
stateful components, visual components, or components which have an implementation 
in FORTRAN or C (native). A component may also have a combination of these 
features.  All components have an execute() method that implements the desired 
functionality (e.g. simulation of a process).  The execute() method may either call legacy 
code (e.g. FORTRAN, C++ dlls) using the Java Native Interface (JNI) (Kralisch et al., 
2004) or call Java code.  This facilitates the incorporation of pre-existing legacy code 
and leverages previous investments in scientific code.  The components presented in 
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this paper demonstrate the native FORTRAN and the default Java stateful behavior. 
 

• Component structure is specified by attributes. Attributes are properties from the 
JavaBeans perspective. Attributes mainly represent the data flow into and out of the 
component. They can also be seen as parameters or variables from the conventional 
modeling perspective. Attributes have meta data attached to them to indicate 
characteristics such as data flow, physical units, range constraints, or the intentional role 
this attribute is supposed to play in a model (variable or parameter).  Each attribute is 
accessed via ‘getter’ and ‘setter’ functions that return and set its value, respectively. 

Development of Forage Growth Component 
The forage growth model that was converted into an OMS component was taken from the Great 
Plains Framework for Agricultural Resource Management (GPFARM) decision support system.  
Andales et al. (2005) give pertinent details of the model.  Live and dead forage (above-ground 
biomass) are simulated for 5 functional groups: warm-season grasses, cool-season grasses, 
forage legumes, shrubs and unpalatable forbs.  Daily forage production is simulated based on 
environmental inputs including daily maximum and minimum air temperature (°C) and a non-
dimensional water stress factor (0 – 1) defined as the ratio of actual transpiration and potential 
transpiration. 

Component Meta Data 

The header of the component contains a brief description of the forage component and meta 
data documenting the author, version, and available reference (Fig. 2).  Other optional meta 
data may be included, all of which are prefixed with ‘@oms’. 

Figure 2. Forage component meta data. 

Native Component (Wrapping of Legacy Code) 

The OMS is able to integrate legacy code modules.  By an automated JAVA wrapper generation 
for legacy code, modules written in languages such as Fortran or C++ can be converted into 
OMS components at the function or subroutine level. 

The existing forage growth model was written in FORTRAN 90 and included the following 
program units: 

/** 
 * Estimates daily shoot (above-ground) growth in rangelands. 
 * @oms.author Allan Andales 
 * @oms.version 1.0 
 * @oms.reference Andales et al. 2005. Rangeland Ecology &  Management 58(3):247-255 
 */ 
 
public class Forage implements Stateful, Native { 
   // User code 
} 
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• Function Forage – calculates daily growth and senescence of each of the five functional 
groups;  

• Module ForagePlants – contains the FORTRAN 90 type definition for a generic plant (mainly 
declarations of variables used to describe the state of a plant) and several generic growth 
response functions; 

• Module SiteDep – contains the FORTRAN 90 type definitions for describing site-dependent 
characteristics (e.g. maximum forage production, area, proportion of the plant community in 
each functional group, etc.). 

The function Forage “uses” the modules ForagePlants and SiteDep. 

The Forage component is ‘Stateful’.  This means that it manages its own memory resources by 
implementing an init() method to initialize attributes (variables and parameters) with appropriate 
values, open files, or connect to external databases; and a cleanup() method to re-initialize 
values or possibly close open files or other connections to system resources (Fig. 3).  The key 
feature of the native Forage component is that it implements the ‘Native’ interface, which 
indicates that the execute() method is implemented through a call to an external FORTRAN 
function called ‘Forage’ (Fig. 3).  The external call to FORTRAN function Forage involves the 
passing of values between the OMS (ByteBuffer) and the external function through facilities of 
the Java Native Interface (JNI).  Note the JNI meta data prefixed by ‘@jni’. 

Figure 3. OMS forage growth component (in Java) that calls legacy FORTRAN code.  Ellipses 
(…) indicate code not shown. 

Operationally, the Java code cannot call the FORTRAN function directly.  Through the JNI, an 
intermediate C function (code not shown) that mirrors the passing arguments in Forage(…) is 
called and subsequently passes the argument values to the FORTRAN function.  The 
intermediate C function serves as the bridge between the Java code and the legacy FORTRAN 
code.  Thus, calling legacy FORTRAN code from the OMS involves the sequence: OMS 
component (Java) → C/C++ bridge → FORTRAN legacy code.  The OMS handles this 
automatically and the process is completely transparent to the user. 

class Forage implements Stateful, Native { 
 
    public void init() { // Initialization code } 
     
    public void cleanup() { // Cleanup code } 
     
    public void execute() { 
       Forage(((BufferBacked)day).getBuffer(), ((BufferBacked)EaEp).getBuffer(),  
                        ((BufferBacked)NitStress).getBuffer(), ((BufferBacked)AveHeight).getBuffer(), ...); 
    } 
/** 
 * Implementation of ‘Forage' 
 * @jni.arg.native day I 
 * @jni.arg.native EaEp D 
 * @jni.arg.native NitStress D 
 * @jni.arg.native AveHeight D ... 
 */ 
    private native void Forage(ByteBuffer day, ByteBuffer EaEp, ByteBuffer NitStress, 
                                                     ByteBuffer AveHeight, ...); 
} 
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All variables in the legacy code that need to be accessible to the OMS must be included in the 
subroutine or function argument list.  This means that any variable contained in a FORTRAN 
common block, module, or type data object must be “brought out” into the function or subroutine 
argument list for the OMS to access it.  In the case of the original FORTRAN forage code, 
essential variables contained in the ForagePlants and SiteDep modules were “brought out” and 
added to the argument list of function Forage. 

Java Component 

A Java OMS component is defined as one that is written entirely in Java (the language of the 
OMS), without calls to legacy code.  Thus, the model can be fully object-oriented and all 
attributes and methods (e.g. process calculations) are contained in Java classes.  As an 
example, the procedural (FORTRAN) and monolithic forage growth module described in the 
previous section was re-conceptualized (Fig. 4) and re-programmed in Java.  Each box in 
Figure 4 represents an OMS component.  A plant or functional group is modeled as having a 
phenology, shoot, and root component.  A rangeland plant community is then modeled as an 
aggregate of several plants or functional groups.  In this example, warm season grasses 
(WSG), cool season grasses (CSG), legumes, shrubs, and forbs are each modeled at the plant 
level and then aggregated to form a plant community.  Pertinent details of the behavior of the 
OMS Shoot component are shown (Fig. 5) as an example of a Java component.  The other 
components of the object-oriented forage growth model follow a similar pattern but are not 
shown here because of space limitations. 

Figure 4. Java classes in the object-oriented forage growth module. 
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The Java shoot component follows the same basic template as the native OMS forage 
component shown in the previous section (Fig. 3), except that the execute() method is 
implemented entirely in Java and does not require the JNI nor a C/C++ bridge.  Thus, the Shoot 
component is only tagged as ‘Stateful’ but not as ‘Native’.   The execute() method calls 
‘runShoot’, which subsequently calls Java methods that simulate forage growth processes (e.g. 
calcStress(), calcdW()).  All the methods to simulate processes are contained in the Java class.  
This is in contrast to an OMS native component, where the process simulations are performed 
by legacy code and not by the Java class itself. 

Figure 5. Java plant shoot component and its behavior. 

 

Component Attributes 

Figure 6 shows a code fragment of the forage component that defines the ‘maxGrowthRate’ 
attribute.  It is declared as a ‘Double’, which means that its value is a double precision real 
number.  The attribute has meta data indicating its default value (0.2), its unit (kg/kg), 
constraints or possible range of values (0.0 to 0.4), and its role as a parameter (constant) in the 
Forage component.  The OMS can compare the current value of ‘maxGrowthRate’ against the 
meta data and perform error checking (e.g. value is outside the ‘constraint’ range) at runtime.  
The OMS can also test the Forage component independent of other components by executing 
the code using different values of ‘maxGrowthRate’ within the specified constraints. 

Read and write access of the ‘maxGrowthRate’ attribute is made possible through the public 
methods getMaxGrowthRate() and setMaxGrowthRate(), respectively.  The 
setMaxGrowthRate() method requires a specific value of ‘maxGrowthRate’ as an argument and 
sets the internal value (this.maxGrowthRate) to it.  On the other hand, the getMaxGrowthRate() 
method returns the current value.  Calling these methods is the only way a user can obtain or 

class Shoot implements Stateful { 
    public void init() { // Initialization code } 
     
    public void cleanup() { // Cleanup code } 
     
    public void execute() { 
       runShoot(); 
    } 
/** 
 * Implementation of ‘runShoot' 
 */ 
    private void runShoot() { 
       calcStress();  //Calculate water and temperature stress factors. 
       calcdW();  //Calculate change in biomass (net assimilation). 
       calcWg();  //Calculate biomass allocated for growth. 
       calcWs();  //Calculate biomass allocated for storage. 
       calcSenescent(); //Calculate senescent biomass. 
       calcHeight();  //Calculate canopy height. 
       calcLAI();  //Calculate leaf area index. 
    } 
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change the value of ‘maxGrowthRate’.  The ‘set’ and ‘get’ methods for each attribute are 
properties of a Javabean, which is the component implementation in Java. 

 
Figure 6. Example attribute object (maxGrowthRate) with meta data (prefixed with @oms) and 

accessors (‘set’ and ‘get’ methods). 

 

OMS Component Builder 

The above examples show some details of how components are implemented in the OMS.  
However, the user does not have to be concerned with component or Java syntax as the OMS 
provides a graphical user interface (GUI) that includes templates and wizards for building 
components.  The user can simply select the required behavior (stateful, native, etc.), input 
component meta data, and define component attributes using the GUI while the Java code is 
generated automatically.  The OMS has a FORTRAN 77/95 parser that can be used to generate 
components from legacy code written in standard FORTRAN 77/95.  Once a component has 
been automatically generated, the user can further edit the component (e.g. add attributes) 
using the component editor, which is also part of the GUI. 

Advantages and Challenges of Component Development in OMS 
Given the examples above, it is clear that the developer needs to invest more “up-front” efforts 
in designing the component structure, I/O requirements, and defining meta data for all the 
attributes that need to be accessible to the OMS.  However, the initial investment in component 
conceptualization and design can bring numerous benefits once the component is used (and re-
used) in different modeling applications.  Because OMS components are designed to be 
context-independent, they can be re-used more readily than code that is monolithic.  In addition, 
the meta data permits introspection of components by the system for runtime checking of 
parameter values, unit conversion, or automated testing.  Meta data also help make the code 
more readable.  The OMS simplifies component creation by providing built-in templates and 

private Attribute.Double maxGrowthRate; 
/** 
 * Maximum relative growth rate of the shoot 
 * @oms.default 0.2 
 * @oms.unit kg/kg 
 * @oms.constraint 0.0 .. 0.4 
 * @oms.role Parameter 
 */     
public void setMaxGrowthRate(Attribute.Double maxGrowthRate) { 
    this.maxGrowthRate = maxGrowthRate; 
} 
 
public Attribute.Double getMaxGrowthRate() { 
    return maxGrowthRate; 
} 
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wizards, both for native (legacy) and Java code.  For a comprehensive discussion of 
advantages and challenges of developing models using the OMS, the reader is referred to 
Ahuja et al. (2005). 

Conclusion 
Future models will be developed by assembling co-operative model components. These units 
need not necessarily originate from a single modeling group, but conform to a standard 
interface/protocol for components offering their respective functionality. The assembly of 
modeling components is aided by the use of model builder tools such as the Object Modeling 
System (OMS) that extract the self-descriptive information from these components. The Object 
Modeling System (OMS), as a framework, helps overcome difficulties for future model 
development by enforcing a standard component design and providing generic software tools to 
support model development, testing, and deployment. By being able to use existing simulation 
code written in FORTRAN, the OMS leverages previous investments in legacy science modules 
and facilitates the development of component-oriented models within a framework that 
maximizes code reusability and ease of maintenance. 

The OMS is free software and is available at http://oms.ars.usda.gov/. 
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