
Using the Object Modeling System
for hydrological model development and application

S. Kralischa, P. Krausea, and O. Davidb

aFriedrich-Schiller-University Jena, Institute for Geography, Jena, Germany (sven.kralisch@uni-jena.de)
bColorado State University, Fort Collins, CO, U.S.A

Abstract: State of the art challenges in sustainable management of water resources have created demand
for integrated, flexible and easy to use hydrological models which are able to simulate the quantitative and
qualitative aspects of the hydrological cycle with a sufficient degree of certainty. Existing models which
have been developed to fit these needs are often constrained to specific scales or purposes and thus can not
be easily adapted to meet different challenges. As a solution for flexible and modularised model development
and application, the Object Modeling System (OMS) has been developed in a joint approach by the USGS
(Denver, Col.), the USDA (Fort Collins, Col.) and the FSU (Jena, Germany). The OMS provides a modern
modelling framework which allows the implementation of single process components to be compiled and
applied as custom tailored model assemblies. This paper describes briefly the OMS and its main components
and explains more in detail how the problems during coupling of models or model components are solved
inside the system. It highlights the integration of different spatial and temporal scales by their representation
as spatial modelling entities embedded into time compound components. As an example the implementation
of the hydrological model J2000 is discussed.

Keywords: Object-oriented modeling system; OMS; modular model development

1 INTRODUCTION

With the implementation of the European Water
Framework Directive (WFD) in December 2000
prognostic modelling for sustainable management
of water resources has become even more impor-
tant than it was before. The goals set up by the
WFD require a stronger integrative and multidis-
ciplinary approach than usually practiced in the
last decades. In addition to quantitative and quali-
tative hydrological issues, socio-economic and
legislative objectives must be considered to find
the best solutions for the maintenance or im-
provement of the water quality in European water
bodies.
Although such an interdisciplinary and holistic
approach is the most promising way to reach the
goals set up by the WFD, it also introduces new
problems, which have to be solved in advance.
The most obvious problem is that each discipline
involved in the development of strategies for sus-
tainable management of water resources is uses its
own methods and tools for prognostic simulation
and modelling of the single processes of the water

cycle throughout Europe. This is true not only
from the multidisciplinary standpoint but also from
a regional point of view. Scientists from one disci-
pline in one part of Europe often use different
models for the same purpose than other scientists
in other parts of the continent because the con-
straints and environmental circumstances are dif-
ferent.
The most significant differences between the sin-
gle models or modelling systems applied in
Europe and worldwide are the specific model
cores which simulate the single processes. On the
other hand, all models or modelling systems have
systematic functionalities (e.g. data in- and output)
which are principally common for all models even
if they had been implemented in different ways.
For future proof model development and applica-
tion, a modular approach which divides the sys-
tematic routines from the scientific parts is the
most promising approach. Such an approach
should provide the basic functionality for data in-
and output, application and communication of the
single components as well as an application pro-
gramming interface (API) for the implementation

403

of the scientific methods in the form of encapsu-

lated programme modules. The most relevant
benefit of such a framework for model developers
would be to enable them to concentrate on only the
implementation of most suitable methods and
always be confronted with a familiar interface and
modelling environment.
The Object Modeling System (OMS) (David et. al
[2002]), developed at the Friedrich-Schiller-
University in Jena, Germany and at the United
States Department for Agriculture in Fort Collins,
Colorado USA, is such a modelling framework.
This paper deals with its introduction and the cur-
rent development and implementation of suitable
programme modules.

2 THE OBJECT MODELING SYSTEM
OMS

The basic OMS concept is the representation of all
its system and model components as independent
modules. These modules are coupled by standard-
ised software interfaces. In order to achieve maxi-
mum platform independence, OMS was imple-
mented in JAVA on top on the NetBeans platform
[http://www.netbeans.org]. NetBeans is an open
source software which provides common desktop
applications requirements like menus, document
management, and settings for the user or devel-
oper. Extension of the OMS by new system com-
ponents is guarantied through integration into the
NetBeans context because of the flexible and ge-
neric interface of this platform. The principal lay-
out of the Object Modelling System is shown in

figure 1. On top the modules divided into system

and scientific components are shown. The system
components provide the Model Builder with single
scientific modules that can be assembled to pro-
vide a running model. The model itself can then be
executed inside the Runtime Environment.
The result is a modular system whose components
can be divided into system components and model
components.

2.1 OMS system components

All functions which are needed for the modelling
system are implemented by the system compo-
nents. System components handle all coupling and
execution of model components. The following
main system components can be identified.
� System Core
The system core provides basic functionality for
all other components and forms the runtime envi-
ronment for model as well as component devel-
opment and execution. The system core imple-
ments all the data types that can be used by model
components. Besides simple data objects a number
of more complex objects and components are
implemented. As an example, objects covering
time issues (e.g. the OMSCalendar) implement
specific time steps for model application and
methods for time step management. Other objects,
like the OMSComponents are used as basic classes
for the implementation of model components.
They can be understood as containers, which have
to be filled by the model or module developers by
the implementation of own methods or processes.
The interaction and communication of such mod-
ules with others is done by standardised functions

NetBeans Platform

OMS Components
SystemModel

Evapo-
transpiration

System Core

Infiltration Model Builder

… …

Runtime Environment

Model Builder

External modules

</ ></ >></ ></ ><///>>></ >

Internet

Model
Code
Generation

Figure 1. Principal layout of the Object Modeling System OMS

404

which hook the modules into their specific con-
text. Such basic functionalities provided by these
containers offers a solid basis for consistent and
sound module development and allow the module
developer to concentrate on the process implemen-
tation without thinking too much about the sys-
tem’s functions.
� Model Builder
The model builder supports the assemblage and
configuration of complex models from single
model component with an easy to use graphical
user interface. This interface offers capabilities for
the mapping of components output parameters to
input parameters of subsequent components.
With the model builder different model configura-
tions can be stored and managed. Once a model
has been assembled and configured inside the
model-builder it can be easily passed to other users
or executed in other computing environments.
� Update Center
The update center is a standard NetBeans compo-
nent and provides functionality for easy update
and download of existing modules for integration
into OMS. All developers of OMS model compo-
nents can encapsulate their work within NetBeans
modules. By offering them via the Internet they
can make their work available to other OMS users
who can then retrieve and install them through the
use of the update center. OMS-tailored NetBeans
modules include not only the model components
themselves, but they can also provide additional
data like parameter-sets and documentation.
All model components can be supplied with addi-
tional signature keys and licensing information to
protect them against modification without permis-
sion and to secure the property rights of the devel-
oper.
� User Interface components
The OMS offers well designed user interface (UI)
components which provide a number of visualiza-
tion features for developers and users. As an ex-
ample, the 2d plot component offers miscellaneous
2d representations for modelling results in form of
graphs or xy-plots. Additional UI components can
easily be added by implementing them as
NetBeans modules and integrating them into the
framework.

2.2 OMS model components

The OMS system components are complemented
by the OMS model components which form the
building blocks for all models created within the
framework. For each model component the follow-
ing properties are prototyped by the OMS and
have to be implemented by the developer:
� The model component implements four com-

mon methods: register(), init(), run() and
cleanup(). The register method comprises
commands and functionality that needs to be

executed once during the model initialization
stage, like loading native libraries containing
model functionality. The init method includes
code to be executed at the first invocation of a
module, mostly for presetting parameters to
initial values. Code contained in the run
method is executed at each module invocation
and contains the real functionality, e.g. the
Penman-Monteith equation for calculation of
the potential evapotranspiration. At the end of
model execution, the cleanup method of each
model component is executed in order to free
resources used by the component.

� The read and write access of each variable is
supervised by the OMS model component. To
secure consistency during runtime, each vari-
able with read access must have been written
by a preceding module during the model exe-
cution. With this information, the runtime sys-
tem is able to synchronise variable values be-
tween the executions of two successive model
components and thus guarantee a harmonised
data flow.

Whereas the model components themselves are
implemented as Java classes, they may include
calls to functions from native libraries using the
Java Native Interface (JNI). Thus, a large amount
of pre-existing process implementations can be
accessed from the OMS with minor reprogram-
ming efforts.
In addition to the model components for the im-
plementation and execution of process representa-
tions, OMS provides specialised compound com-
ponents. These work as containers for other model
components and can be used to represent hierar-
chical structures. Each compound component
provides an internal iterator which controls if and
how the contained elements are enumerated. By
modifying this iterator, arbitrary control structures
like conditional or iterated execution of contained
components can be realised. In case of a condi-
tional operator the representing compound compo-
nent simply decides if or if not the contained com-
ponents are executed - dependent on some external
condition checked by the component. For exam-
ple, if the compound component represents a
while-operator, the compound component con-
secutively iterates over all contained components
as long as a specific external condition is valid.
With these compound components, the runtime
behaviour of the models can be very effectively
structured and implemented.
Because of the representation of temporal or spa-
tial contexts in many models, the iterated execu-
tion of model components is of special interest.
Therefore predefined compound components for
representation of temporal contexts (TimeCom-
poundComponent) and spatial contexts (Spatial-
CompoundComponent) are already implemented
in OMS. TimeCompoundComponents (TCC) own

405

a specific attribute that represents a user defined
time interval and step size. With such data, TCC
can create discrete points in time. On the other
hand, SpatialCompoundComponents (SCC) repre-
sent discrete points in space by explicitly listing
predefined spatial entities like Hydrological Re-
sponse Units (HRU) or raster cells. Figure 2 shows
an example of the execution of model components
within a TCC on the left side. Here the process
modules A to D are executed iteratively inside a
time loop provided and controlled by the TCC. On
the right side of figure 2, a SCC is integrated into
the TCC. Again the modules A to D are executed
iteratively but now across time and space. The
right example also shows how compound compo-
nents can be assembled in a hierarchical manner.

2.3 Representing space

In order to represent spatial model entities, the
system core uses the data type OMSEntity.

OMSEntities work as an abstract container for
arbitrary attributes of spatial entities. These data
which can vary for each OMSEntity object are
stored in tables that map attribute names to their
respective values. With this approach attribute sets
of spatial model entities can easily be expanded if
additional data are provided by new model com-
ponents or external sources. Figure 3 shows an
example of how spatial model entities (polygons
or raster cells) can be obtained and represented as
OMSEntity objects. The figure shows a basin with
elevation and soil information. Each entity has a
unique ID and a set of elevation and soil-type
values. Specific getter and setter functions of the
OMSEntity can be used to access the OMSEntity’s
attribute set. This attribute set is then used during
model execution to provide the process modules
with the required spatial distributed information.

Figure 2. Application of compound components for representation of temporal and spatial contexts

When a model is assembled with the model
builder, the single process modules can extend the
OMSEntity set by process specific state variables

Figure 3. Representing spatial model entities as OMSEntity objects

406

and attributes. For example, a soil water process
module with two different soil storages extends the
attribute set of each OMSEntity object by two
variables representing the storages during initiali-
sation. Additionally, specific getter and setter
routines are set up to retrieve or change the current
state of these storages according to the running
processes during the model execution.
The idea of representing spatial entities as abstract
containers for arbitrary data opens the possibility
of implementing model components which are not
bound to a specific spatial discretisation (e.g.,
polygons or raster cells). Furthermore, they can
work on OMSEntity data objects without consid-
eration or knowledge of the underlying discretisa-
tion concept. This feature, of course, cannot solve
problems of process validity and compatibility on
specific spatial and temporal scales, which still
have to be considered by the module or model
developer.

3 APPLICATION OF THE OMS

In order to test the described system against an
existing model, a number of model components
have been implemented. The basis for these com-
ponents was provided by the J2000 model (Krause
2001, Krause 2002) which is a conceptual fully
distributive hydrological modelling system. The
J2000 uses the topological HRU approach for
catchment discretisation and implements the single
processes of the hydrological cycle (ETP, snow,
soil water, groundwater, lateral routing between
the HRUs and channel routing) as encapsulated
process modules. Therefore the J2000 already
provides a number of cleanly implemented process
descriptions written in Java. These were trans-
ferred into OMS model components with only
minor adjustments in the initialisation and cleanup
routines. Additionally, readers for transferring the
J2000 parameter files (which describe the spatial
entities J2KParaReader) and for the input data
files (which contain the driving variables
xxxDataInput) have been integrated into the
OMS. Figure 4 shows the J2000 model setup in-
side the OMS Model Builder.
During initialisation within the OMS/J2000 model,
the J2KParaReader component reads the J2000
two spatial model entity types (Hydrological Re-
sponse Units and river reach units) together with
their describing parameters from external data
sources (files). The objects descriptions are then
translated into two lists of OMSEntitiy objects,
one for the HRUs and one for the river reaches.
These lists can then be accessed by two different
Spatial Compound Components which are used to
create iterators over the lists. The attributes of the
single objects in the OMSEntitiy lists are then
updated by the process modules with additional
attributes and state variables together with getter
and setter routines to assess their content. Both
SCC are then integrated into the temporal context
of one TCC which iterates in daily time steps dur-
ing model execution.
During model application for each iteration step of
the TCC, the two SCCs execute a number of dif-
ferent process modules embedded in their context
in a sequential order (figure 4). During the execu-
tion of the single process modules, the state of the
spatial objects passed to them are changed accord-
ing to the process implementation inside the mod-
ules and the updated states are given back to the
system. An example of the run routine of a module
implementing the interception process is shown in
figure 5. In the beginning, the relevant HRU at-
tributes are passed to local variables. Next, the
process implementation follows and is terminated
at the end by the return of the updated local vari-
ables back to the HRU object. Preliminary test
runs of the OMS/J2000 model show that the sys-
tem produces nearly identical results as the origi-

Figure 4. Composition of J2000 components with
the model builder

407

nal J2000 model. The differences are mostly de-
termined by different treatment of the input vari-
ables and slightly differing parameter sets.

4 CONCLUSION AND OUTLOOK

This first implementation of a complete hydrologi-
cal model into the OMS has shown the suitability
of the system for model development and applica-

tion. For the integration of the J2000 modules and
its distribution, concept spatial entities have been
developed and integrated into the OMS. Great care
was taken to implement the OMSEntities as flexi-
ble and open as possible to guarantee their reus-
ability for other process modules from other mod-
els. During the refactoring of the J2000 modules
for the use inside OMS, only minor parts had to be
adapted to ensure proper module installation and
initialisation. The original process implementa-
tions were left untouched. Test runs of the
OMS/J2000 implementation showed nearly identi-
cal results when compared to the original model
results.

public class IntcDS extends OMSComponent {
 transient OMSTimeInterval time;
 transient OMSEntitySet es;

 public int run() {
 //pass hru variables to local variables
 OMSEntity currentEntity = this.es.current;
 int julday = (int) time.current.getDayInYear();
 double[] LAIArray = (double[])

currentEntity.getAttribute("LAI");
 double LAI = LAIArray[julday-1];
 double area =

currentEntity.getDoubleAttribute("area");
 double dailyRain =

currentEntity.getDoubleAttribute("dailyRain");
 double dailyTmean =

currentEntity.getDoubleAttribute("dailyTmean");
 double dailyPetp =

currentEntity.getDoubleAttribute("dailyPetp");
 double dailyAetp =

currentEntity.getDoubleAttribute("dailyAetp");
 double deltaETP = dailyPetp - dailyAetp;
 double actIntcStorage =
currentEntity.getDoubleAttribute("actIntcStorage");
 double throughfall = 0;
 double dailyIntc = 0;

 //calculate interception parameters
 double alpha = 0;
 if(dailyTmean < -2.0)
 alpha = 0.5;
 else
 alpha = 0.2;

 double maxIntcCap = (LAI * alpha) * area;

 if(actIntcStorage > maxIntcCap){
 throughfall = actIntcStorage - maxIntcCap;
 actIntcStorage = maxIntcCap;
 }

 double deltaIntc = maxIntcCap - actIntcStorage;

 if(deltaIntc > 0){
 double saveRain = dailyRain;
 if(dailyRain > deltaIntc){
 actIntcStorage = maxIntcCap;
 dailyRain = dailyRain - deltaIntc;
 deltaIntc = 0;
 dailyIntc = (saveRain - dailyRain);
 } else{
 actIntcStorage = (actIntcStorage + dailyRain);
 dailyIntc = dailyRain;
 dailyRain = 0;
 }
 }
 if(deltaETP > 0){
 if(actIntcStorage > deltaETP){
 actIntcStorage = actIntcStorage - deltaETP;
 dailyAetp = dailyAetp + deltaETP;
 deltaETP = 0;
 } else{
 deltaETP = deltaETP - actIntcStorage;
 dailyAetp = dailyAetp + (dailyPetp - deltaETP);
 actIntcStorage = 0;
 }
 }

 //return hru variables from local variables
 currentEntity.setDoubleAttribute("throughfall",

throughfall);
 currentEntity.setDoubleAttribute("netPrecip",

throughfall + this.dailyRain);
 currentEntity.setDoubleAttribute("dailyAetp",

dailyAetp);
 currentEntity.setDoubleAttribute("actIntcStorage",

actIntcStorage);
 currentEntity.setDoubleAttribute("dailyIntc",

dailyIntc);

 return 0;
 }

The comparison of the OMS/J2000 against the
original implementation also showed that the OMS
performance is much slower than the original
implementation. This lack of performance is re-
lated to the flexibility gained by the use of dy-
namic attribute sets for model entities inside the
OMS. To keep them updated and consistent during
model execution, a lot of time consuming comput-
ing, like type casting, has to be performed. The
optimisation of model performance and elimina-
tion of time consuming operations during model
execution therefore forms the subject of ongoing
research. A possible solution could be the utiliza-
tion of alternative data structures for storing entity
attributes. The GNU Trove library
(http://trove4j.sourceforge.net/) e.g. provides a
fast, lightweight implementation of the Java Col-
lections API to realize this.

5 REFERENCES

David O., S.L. Markstrom, K.W. Rojas, L.R.
Ahuja, and I.W. Schneider (2002). The Object
Modeling System, In: Agricultural System Mod-
els in Field Research and Technology Transfer,
L. Ahuja, L. Ma, T.A. Howell, Eds., Lewis Pub-
lishers, CRC Press LLC, 2002: 317—331.

Krause, P. (2001): Das hydrologische Modellsys-
tem J2000 – Beschreibung und Anwendung in
großen Flußgebieten (The hydrological model-
ling system J2000 – Documentation and applica-
tion in large river basins); Schriften des For-
schungszentrums Jülich, Reihe Um-
welt/Environment, Band 29

Krause, P. (2002): Quantifying the impact of land
use changes on the water balance of large catch-
ments using the J2000 model; Physics and
Chemistry of the Earth, 27, p. 663-673

Figure 5. Example of the run routine of a
OMS/J2000 process module.

408

