
Metadata and Modeling Frameworks:
The Object Modeling System Example

O. Davida , I. W. Schneiderb, and G. H. Leavesleyc

a Colorado State University, Fort Collins, CO, U.S.A.
b USDA Agricultural Research Service, Great Plains System Research, Fort Collins, CO, U.S.A

c US Geological Survey, Denver CO, U.S.A

Abstract: The main motivation for the usage of modeling frameworks for environmental simulation
software is to manage and simplify the interoperability of (loosely) coupled simulation components.
Conventional approaches in collaboration are using an Application Programming Interface (API). Recent
developments in simulation frameworks focus on introspecting architectures for simulation components,
where components become passively explored and integrated in to the framework. Such solutions seem to be
more flexible to support the framework evolution because components are less tight to a specific framework
API. The Object Modeling System (OMS) is an introspecting simulation framework, which uses metadata
in annotated components such as (i) spatial and temporal constraint specification, (ii) data annotation for
variables and parameters to specify simulation related data like runtime constraints for range validation,
unit conversion, or automated testing. The OMS utilizes metadata annotation (i) at model construction time
to support proper spatial and temporal model assembly (ii) and at model runtime to support proper data
linkage. This paper will emphasize on metadata access to support model linkage to simplify the
development of simulation components for environmental scientists and will give application examples
based on the Object Modeling System

Keywords: Modeling; Framework; Metadata; Components; Java

1. INTRODUCTION

Meta data in the context of modelling and
simulation traditionally represents knowledge
about the application of simulation models. For
example, the proper setup of parameter sets to run
a model is only possible with the correct
knowledge about parameter range constraints,
physical units, etc. Such information usually
resides in documentation or is a part of the user
interface.

For modelling frameworks meta data has further
meaning and importance. Meta data can be used
to support the process of model (i) construction,
(ii) testing and (iii) application.

This paper introduces the Object Modeling System
with respect to its underlying component concept.

2. THE OBJECT MODELING SYSTEM

The Object Modeling System (OMS) is a Java-
based modeling framework that facilitates
simulation model development, evaluation and
deployment. OMS models are treated as
hierarchical assembled components representing
building blocks. Components are independent and
reusable software units implementing processing
objects for simulation models. In general, OMS
consists of a library of science, control, and
database modules and a means to assemble the
selected modules into an application-specific
modeling package. The framework is supported by
data dictionary, data retrieval, GIS, graphical
visualization, and statistical analysis utility
modules. Current challenges in natural resource
management have created demand for integrated,
flexible, and easily parameterized hydrologic
models. Most of these monolithic models are not

439

modular, thus modifications (e.g., changes in
process representation) require considerable time,
effort, and expense.

OMS addresses these needs by using an object-
oriented, component based approach for model
development to:

� Reduce duplication of modeling efforts
� Improve the quality and currency of model

code
� Make natural resource models much easier to

build, access, understand and use;
� Facilitate long-term maintainability of

existing and new natural resource models;
� Lead to greater consistency of modeling for

particular problems and scales;
� Enhance response and delivery times in

scientific modeling projects;
� Ensure creditability and security of model

implementations; and
� Function on any major computing platform.

2.1 OMS Components

Components are the basic building blocks of a
model. They represent usually a unique concept in
a model like a physical process, a management
practice, a remote data input, etc. Components can
be fully understood just by exploring the
component metadata. Therefore OMS defines a
comprehensive set of metadata which should be
bundled with the component.

Meta data attachment to components is a
technique which was introduced to the Java
Programming language by means of formal
documentation annotation support. Classes, fields,
and methods can have documentation header,
which are comments according to the Java
Language specification but contain useful
additional info for the java documentation tool
‘javadoc’ [???]. Javadoc annotations are primarily
used to generate API documentation (HTML and
other formats) out of java sources. Such an
approach helps managing a consistent source code
documentation by keeping code and code
documentation in the same file.

The javadoc style annotation of java language
elements was also designed to be extensible. It is
legal to define custom meta data annotations for
java classes. Parsing tools for java such as
javadoc, ‘qdox’, or the Netbeans Java Source API

provide comprehensive support to lookup and
manage documentation annotations.

The javadoc approach was used to support the
meta data annotation of components. The meta
data can be categorized in two conceptual groups

•••• Meta data to document the component in
an informal way. A component contains
for example metadata about its creation
time, the author, the organization, or
references to publications related to the
code.

1. Formal meta data to annotate a
component for model integration or
testing. Such meta data is required by
OMS to support the proper component
integration into a model at design time.
Such meta data enables OMS to deal with
formal processing requirements.

There are two main levels of meta data annotation
for an OMS component.

1. Component meta data annotates the
entire component. It contains information
about its overall purpose, authorship,
version control, literature references,
temporal or spatial scale etc.

2. Attribute meta data annotates data
requirements of the component per public
attribute. Such metadata captures
additional information about the
attribute, such as physical units, data
constraints, data flow, default values, etc.

Figure 1 shows the component meta data for a
forage component. OMS related meta info is
tagged with a ‘@oms.’ at the beginning to avoid
‘namespace’ conflicts with potential other tag
definitions.
/**
 * Forage.
 *
 * This module estimates daily
 * plant growth for five functional
 * groups in rangelands.Daily growth is
 * driven by average daily temperature
 * relative to the optimum and base
 * temperatures for cool season grasses
 * (C3), warm season grasses (C4),
 * legumes, shrubs, and weeds. The module
 * is adapted from GPFARM.
 *
 * @oms.author Allan Andales
 * @oms.version $Id: Forage.java 294 2004-
 * 05-24 21:11:15Z david $
 * @oms.created April 1, 2004, 2:39 PM
 * @oms.name Forage Component
 * @oms.category Plants
 * @jni.files RunForage.f90 PlantMod.f90
 * ForSite.f90 Forage.f90
 */
public class Forage extends …

440

Figure 1: ‘Forage’ Component Definition

Component meta data in OMS affects several
phases in component integration and model
development which are mentioned briefly.

2.1.1 Component Documentation.

Meta data annotations of components are used in
OMS to generate documentation. Unlike the
default javadoc tool, OMS generates XML
Docbook (Welsh, 1999) to document components.
Docbook was chosen as the main document format
because of its flexibility to transform component
documentation into other formats more easily.
Formal and informal meta data is used for
documentation generation. Resulting component
XML specification can be processed with any tool
supporting docbook or they can be transformed in
other XML representations. The inclusion of
component specifications into an XML component
library data base is one of many examples.

2.1.2 Component Testing

Formal meta data is being used to support
automated testing. OMS facilitates black box
testing of components. Each component attribute
can be annotated with test related information for
its input and output. OMS consumes these
annotations in a testing phase to test the
component by

1. Generating input data according to given
test annotations. Test data will be
generated using several available random
or sequence generators.

2. Checking output data according to given
test annotations. Output data is usually
expected to be in a certain range.

2.1.3 Component Integration/Model Design Time

Model design refers to the process of model
construction based on model building blocks,
known as components. A component needs to tell
the modelling framework if it fits into model,
which the model developer is going to built. The
component has to offer information about
application scales, data dependencies and other
information, which are important for a consistent
integration of the component into the model. If for
example data requirements cannot be resolved, the
modelling framework will guide the user to select
alternative or additional components for the
model.

2.1.4. Component Execution/Model Runtime

At model run time meta data availability about the
models data is useful as well. If for example the
components data has additional meta data about
physical units of the components input data, unit
conversion can be performed dynamically. Run
time checks of model state variables can be
specified with metadata.

Metadata affects the communication between the
modeling framework and the component.
Components want to see data handled by the
modelling system under a certain name, in a
certain unit, etc. Components interact with the
framework to get the data in the right structure
and format.

2.2 API vs. Introspection

There are two major communication principles of
components. In an API based communication the
component interacts with the system by using a
well known API. This is the common and
traditional method for interoperability.
Component developers are using framework API
calls to get data in a requested format. Such an
approach can be used in any kind of programming
language. A component using a framework API
is then tightly coupled, technically and
conceptually. Such a component can hardly be
reused in another context.

The communication between the modeling
framework and the component can also be based
on a more flexible schema for interaction, called
introspection. Here, the modeling framework is
capable to explore the structure and content of a
component with respect to data and metadata.
This approach works only on architectures, which
do have building support for such introspection
and exploration. Java and C# are the examples for
such architectures.

2.2.1 OMS Attributes

An attribute is a basic data type in OMS. It
extends the concept of a typed data element with
its ability for metadata annotation and
management.

Attributes are representing model state variables
or model parameter. They are component input or
output. A component interacts with attributes
only. The usage of attributes in a model
determines, if such an object is considered to be a

441

parameter or a variable. There is no such
terminology like a parameter or state variable at
the component level in OMS.

OMS uses introspection to deal with meta data for
design and run time purposes. All data and meta
data belonging to the attribute called ‘nitstress’ is
shown in Figure 2. The object ‘nitstress’
represents a stress factor for nitrogen in a OMS
component called ‘Forage’. There is the data
declaration given as object of type
‘Attribute.Double’. The does have such classes for
all reqired basic data types (floating point, fixed
point, boolean). These are actually Java interfaces
and no classes.

The data declaration is preceded by a section
containing all the metadata about the attribute.
This section is enclosed in ‘/** .. */’. It is actually
a comment according to the Java Language
specification as mentioned before.

/** Nitrogen stress factor.
 * @oms.name_de Sickstoff Stress

Faktor
 * @oms.unit kg/kg
 * @oms.access read
 * @oms.constraint 0.0..1.0
 * @oms.default 1.0
 */
private Attribute.Double nitstress;

Figure 2: Attribute Definition

The metadata annotation section starts with the
name of the attribute in English. It is followed by
OMS annotation tags all starting with “@oms.”.
There are several tags recognized by OMS:

�

@oms.name_<loc>

This optional tag contains the localized
name. If the design or run time
environment is localized for a certain
lanuage, this name gets used.

�

@oms.unit

This optional tag refers to the unit of the
attribute. It uses the UCAR units notation
specification (Emmerson et al. 2001) .

�

@oms.access

This required tag specifies the data flow.
Either the component reads or writes this
attribute.

�

@oms.constraint

This optional tag controls additional
value constraints of an attribute. In the
example above nitstress is a factor wich

has a valis range of 0 to 1. Any other
value is considered to be incorrect
according to the definition of nitstress.
Constrains become handy for run time
verification of a model. If a value violates
the constraint specification the system
will notify the user and might indicate a
problem with input data. Other valid
values for the constraint tag are: ‘<=0’ or
‘>-273.15’

�

@oms.default

This optional tag contains the default
value for this attribute.

There are other metadata annotation tags not used
in this example.

�

@oms.dim

 If the attribute is an Array (eg.
Attribute.DoubleArray) this tag points to
a numerical constant or to another
attribute representing the dimension of
that array.

�

@oms.test

This specific tag supports the automated
testing of components. The content of
this tag is similar to the constraint tag.
OMS perform a component test, which
generates data according to the
requirements specified in this tag. In the
given example a useful test related to
‘nitstress’ would be ‘@oms.test 0.0..1.0’.
A randomizer would generate input data
in this range. The component could then
be verified automatically.

Attribute types such as ‘Attribute.Double’ are
realized as Java interfaces as supposed to classes.
There are several internal classes in OMS which
are implementing these interfaces. The system
choses the right implementation for the given set
of metadata and will pass the system generated
attribute to the component. It uses reflectively the
property getter and setter methods to access the
attribute. Setter and Getter are implemented
according to the Java Beans Standard.

5. CONCLUSIONS

Meta data is far more than a semantic add-on for
modelling frameworks. Properly designed, a
strong support for meta data helps modelling
frameworks to support model developer and user

442

in the process of model construction and
application.

The Object Modeling System OMS uses
annotations of components to capture information
about the models data in addition to data names
and types. Such annotations provide the benefit of
keeping data and metadata close together and
allow for the application of different tools for
executing testing, and documenting.

The metadata annotations in OMS were used for
the development of model components out of the
Root Zone Water Quality Model (RZWQM), the
Precipitation Runoff Modeling System (PRMS).

The future Java annotation support specified in
the JSR 175 and implemented in JDK 1.5 offers
the a more straightforward implementation of
metadata management in the Java virtual
machine, which is expected to be used for OMS.

6. ACKNOWLEDGEMENTS

The authors wish to thank the Agricultural
Research Service ARS, the National Resource
Conservation Service NRCS and the U.S.
Geological Service USGS for the support of the
OMS development.

7. REFERENCES

David O., S.L. Markstrom, K.W. Rojas, L.R.
Ahuja, and I.W. Schneider (2002). The
Object Modeling System, In: Agricultural
System Models in Field Research and
Technology Transfer, L. Ahuja, L. Ma, T.A.
Howell, Eds., Lewis Publishers, CRC Press
LLC, 2002: 317—331.

Leavesley, G. H., R. W. Lichty, et al. (1983).
Precipitation-runoff modeling system--User's
manual, U.S. Geological Survey: 207.

Leavesley, G. H., G. E. Grant, et al. (1996). A
modular modeling approach to watershed
analysis and ecosystem management.
Watershed '96 A National Conference on
Watershed Management, U.S. Government
Printing Office.

Bloch J. : A Program Annotation Facility for the
Java Programming Language. JSR-175
Public Draft Specification.
[http://www.jcp.org/en/jsr/detail?id=175]

Emmerson S. el al. (2001): Units Specification.
JSR-108 Public Draft Specification.
[http://www.jcp.org/en/jsr/detail?id=108]

Walsh, N., Muellner L. (1999). DocBook: The
Definitive Guide. O'Reilly & Associates, Oct
1999.

JavaDoc, Core JavaDoc Tool
[http://java.sun.com/j2se/javadoc/]

Arnold,K.; J. Gosling, D. Holmes (1998): The
Java Programming Language, Addison
Wesley, 1998

443

