
Geospatial Interoperability in Modeling Frameworks -

The ‘GEOLEM’ Approach

O. Davida , R. J. Vigerb, I. W. Schneiderc, and L. Garciaa
a Colorado State University, Fort Collins, CO, U.S.A.

b US Geological Survey, Denver CO, U.S.A
c USDA Agricultural Research Service, Great Plains System Research, Fort Collins, CO, U.S.A

Abstract: Environmental models and modeling frameworks (MF) typically do not represent geographic
information in a way that enables the direct translation of this information between geographic information
systems (GIS) and the model or modeling framework. Parameters of the characteristics of geographic features
are processed as part of a model’s mathematical solution and are thus explicitly represented in the model. In
addition to the lack of semantic definition of geographic information in the environmental modeling process,
current modeling approaches suffer from a lack of interoperability. The GEOLEM (Geospatial Object Library
for Environmental Modeling) project forms a interagency working group which implements GEOLEM as a
middleware solution (i) for the definition, storage, and manipulation of geographic metadata and (ii) for the
transformation of information from the form of one context into another based on metadata specification (e.g.
from the spatial data formats of GIS into the parameter organization of an environmental model). The purpose
of this system is to eliminate the need for GIS-specific knowledge in the modeling framework and model-
specific knowledge in the GIS. More specifically, GEOLEM will result in Modeling Frameworks being able
to specify methods conceptually for the (i) Delineation of geographic features, (ii) Parameterization of
geographic features, (iii) Visualization of model and GIS data entities, and (iv) the Exploration of model and
GIS data entities.

Keywords: Modeling Frameworks, GIS, Interoperability, Modeling

1. INTRODUCTION

Environmental models and modeling frameworks
typically do not represent geographic information
in a way that enables the direct translation of this
information between geographic information
systems (GIS) and the model or modeling
framework. Parameters of the characteristics of
geographic features, such as area and volume, are
processed as part of a model’s mathematical
solution and are thus explicitly represented in the
model. Information about the specific geometry or
location of the geographic features whose behavior
is being simulated is rarely represented explicitly
in the model. The specification of methods needed
to generate parameters describing the geographic
features, or to actually delineate those geographic
features in the first place, are never represented
within the model. Further, the semantic definition
of geographic feature types and their parameters
are not represented within models. While

environmental models are not expected to actually
derive input geographic information, they should
provide information about how to derive that
information.

In addition to the lack of semantic definition of
geographic information in the environmental
modeling process, current modeling approaches
suffer from a lack of interoperability. In all cases
where GIS data are used in an environmental
modeling context, it is necessary to develop
algorithms or methods that provide for the
translation between the two representations of
spatially relevant information. Translation
algorithms developed to date have been tightly
designed to the needs and characteristics of
specific models and GISs. As a result, two
increasingly important types of problems present
themselves: (i) resource, (ii) technical. The
resource problem occurs because the translation
algorithms are not, by and large, reusable. This

means that each connection between a specific
pairing of an environmental model and a GIS
requires a unique translation algorithm, which, in
turn, requires new resources to repeatedly solve the
same conceptual problem

The more significant problem resulting from
incompatible translation algorithms is technical in
nature. Because each translation algorithm is
unique to a model/GIS combination, sharing and
coupling of environmental models and GIS
methods is hindered. Once an environmental model
or modeling framework has been “wired” to a GIS,
it should automatically gain access to a wide array
of community-developed geoprocessing libraries
and geographic visualization software. To achieve
this, standard protocols should be established for
translating spatial information between GIS,
environmental models, and other tools common to
environmental modeling tasks. In addition, a
metadata nomenclature should be established for
referencing the array of geographic feature types
relevant to environmental modeling. With these
standards in place, generic sets of information
translation adapters can be developed such that
once a modeler has “mapped” their unique
nomenclature to the standard nomenclature,
transfer of information to and from GIS can more
readily be automated. In addition, whenever a new
geo-processing or visualization tool is developed in
conformance with these standards, the tool is
immediately available to the larger community.

2. BACKGROUND / RELATED WORK

Despite the lack of semantic description about
geographic information in simulation models,
tighter integration of GIS and simulation models
has been sought. One approach has been to put
“the model in the GIS”. Although GIS and
computing resources have evolved to a point that
implementation of an environmental model within
a GIS is possible, programming within the confines
of a GIS has not become the norm. This is largely
due to the relatively poor computational efficiency
of the programming languages of most GISs and
the burden of interacting directly with GIS data
structures. Developers typically prefer to design
models that ingest the simplest form of spatial data
possible and concentrate their development efforts
on the simulation of environmental processes.
Examples of this have ranged from using GIS as a
map-based interface for the selection of pre-
existing data and model execution (US
Environmental Protection Agency) to the creation
of model inputs and model execution (Robinson
and Mackay 1995) to a full integration of

environmental models into spatial decision support
systems (Taylor, Walker et al. 1999).

Alternatively, putting “the GIS in the model” has
largely been rejected because the complexity of
implementing GIS within models or model
frameworks is not cost-effective. This approach
has been most clearly adopted in groundwater
models, where the modeling response units are
delineated according to relatively simplistic
methodologies such as finite difference or finite
element meshes (McDonald and Harbaugh 1988).
Although these models do not normally generate
the original maps of modeling response units, they
do exploit the spatial topological connections
between units.

As a result, a third approach has gained popularity.
GIS is used as a standalone pre- or post-processor
for a model, reducing spatial data to the simplistic
descriptions expected by the model. The USGS
GIS Weasel is an example of this (Viger,
Markstrom et al. 1998). A GIS operator usually
works with a modeler to manipulate and digest
spatial data into a file or set of files that will
eventually be read by the model. The knowledge
that was used to apply the GIS appropriately
usually resides in the mind of modeler and the GIS
operator. This knowledge is not normally
formalized or codified. In the case of well-
established models, dedicated GIS software
applications may be developed as pre- or post-
processors. Although these applications do serve to
codify the knowledge used to delineate geographic
features and derive parameters of those features,
they fail to enable the re-use of those geo-
processing methodologies in newly created models.

Figure 1. GIS, VIZ, and MF components with

distinct internal “native data models” and custom
integration directly mapping between specific

native data models.

A fourth approach, depicted in Figure 1, seeks a
looser coupling of GIS, MFs, and visualization
software (Viz). This configuration relies on
communication between discrete software
components, rather than merging functionalities of

disparate components into a monolithic piece of
software (Leavesley, Grant et al. 1996).

This approach towards the integration of GIS and
environmental models will be used as a starting
point for the research proposed here.

3. GEOLEM DESIGN

In order to be able to allow software components
to more readily interconnect in a generic way,
Figure 2 shows a middleware architecture that
allows the most effective data model for each
software component to continue being used by
each respective component, yet facilitate the
movement of information across these contexts.
This middleware is referred here as the Geographic
Object. The authors seek to leverage the ideas of
the OGC Geographic Object initiative (OpenGIS
Consortium 2003), and participate, if feasible, in
this effort. One way to describe the role of the
Geographic Object is that it maps the relevant
details of one context to those of another.

3.1 Objective

The objective of GEOLEM is to enable the
systematic integration of MFs and GIS during (i)
pre-run, (ii) run-time, and (iii) post-run phases of
modeling. In addition, this effort seeks to eliminate
the need for GIS-specific knowledge in the
environmental model and environmental model-
specific knowledge in the GIS. More specifically,
this effort will result in MFs being able to specify
methods for the

• Delineation of geographic features
• Parameterization of geographic features
• Visualization of model and GIS data entities
• Exploration of model and GIS data entities

Central to achieving these goals is the development
of template metadata specifications for geographic
information to be used by models developed in the
MFs. The developer of an earth science model will
be able to use previously specified types of
geographic features in that model. These template
specifications will not significantly alter the style
of data model (e.g. arrays of parameters) typically
found within traditional earth science modeling
components.

3.2 Approach

This mapping is represented by chains of arrows
that connect one external component to another.
Consider the chain at the bottom of Figure 2,
representing the MF requesting information that is
generated in the GIS. The MF communicates with
the Geographic Object, requesting information in a
format suitable to the MF. The Geographic Object
understands that the information requested by the
MF corresponds to some GIS-based information.
Based on this understanding, the Geographic
Object requests the appropriate information from
the GIS. Once this GIS information is returned
from the GIS to the Geographic Object, the
Geographic Object then uses its understanding of
the MF-GIS correspondence to return a set of MF-
appropriate information to the MF. The broad
arrows represent component specific
communication. The thin, black arrow represents
the work that the middleware does to translate
information from one context into another. In our
example, this could be the reduction of shape files
to arrays of parameters.

The benefit of this mapping is that the MF does not
need to understand how to make low-level requests
to the GIS, nor does it need to know how to extract
what it needs from the alien data formats of the
GIS. It needs only to know how to make request to
the Geographic Object for the higher-level
information that it needs.

To extend the sample explanation of the arrow
chain started above, let the information requested
by the MF be the elevation of hillslopes within a
watershed. The Geographic Object will understand
that the MF ultimately wants to receive an array of
real numbers, because the name of the parameter
within the MF, say elev , has an association within
the Geographic Object middleware to a description
which states the numerical format of elev. The
Geographic Object will also have a specification
that the method used to derive the real numbers in
the array elev is to find the median value in the
distribution of elevations within each hillslope. In
addition, the Geographic Object middleware will
know about a hillslope and how it should be
derived. Although it is obvious to human users that
in order for the median elevations of hillslopes to
be derived, hillslopes must first be delineated, this
information is not known to the MF which simply
knows that it needs an array of real numbers. The
Geographic Object will manage this relationship

Figure 2. Integration of software components based on middleware (OGC Geographic Object) conceptual
model.

4. IMPLEMENTATION

Figure 3 shows how an environmental simulation
model can access GIS functionality. The model is
represented on the left, in this case by PRMS
(Precipitation Runoff Modeling System, Leavesley
et al.,1983). The model is intended to make high-
level calls to GEOLEM, based on the internal
vocabulary of the model. The rationale is to avoid
as much as possible changing the internal workings
of the pre-existing model or modeling framework.
Requests will typically be for parameters.
GEOLEM will be able to take these high-level
requests and translate their meaning into generic
terms.

Figure 3. General structure of the connections
between an environmental simulation model,

GEOLEM, and a GIS server.

There are three different linguistic contexts in the
scenario described above: (i) the environmental
simulation model, (ii) GEOLEM, and (iii) the GIS
server. In order to communicate across these

contexts, two different translations are made. The
first is from the language of the model into that of
GEOLEM and the second is from the language of
GEOLEM into that of the GIS server. The first
translation relies on what is referred here as the
conceptual schema for the environmental model.
This is a metadata store that encodes the
conceptual model, described in the previous
chapter, for geographic information within the
environmental simulation model. The conceptual
schema is configured to relate the elements of
conceptual model to analogs available within the
GEOLEM library.

4.1 GEOLEM Functions

The GEOLEM library, which is not shown in
Figure 3, contains several types of functions:
commands, compound commands, and parameter
providers. These functions are intended to provide
a generic way to use basic GIS functions. These
basic functions can be grouped to develop more
complex geo-processing methodologies or they can
be used to extract information from a GIS. As
noted in Figure 3, GEOLEM is not a GIS itself and
relies on the existence of a GIS server with which
it can communicate.

4.1.1 Commands

Commands are used here to denote simple, single-
step functions. Examples of some commands could

be “calculate aspect” or “derive a watershed”.
Figure 4 depicts the class hierarchy used to create
such a command.

Figure 3. Inheritance Hierarchy of the simple GIS
Command, Aspect.

The CommandSpec box on the left is an interface,
meaning that it is merely a general definition that is
not actually implemented. It serves to set a
minimum level of functionality that all descendent
functions must support. The
AbstractCommandSpec is the basic implementation
of the CommandSpec interface. Note that this
implementation is denoted by the dashed arrow
accompanied by the <<realize>> label. At the right
of Figure 3, the Aspect class is what could be
thought of as an actual GIS command. It extends
the InOutCommandSpec, which in turn extends the
AbstractCommandSpec. Extension, a basic
principle of object oriented design, effectively
allows new functionality and properties to be
added to a general class. The new functionality and
properties are encoded in a sub-class. The sub-
class, by referencing the more general super-class,
will gain all the functionality and properties that
existed in that original class. InOutCommandSpec
merely serves as a helper to add some functionality
that is likely to be widely used by other actual GIS
commands. Commands like Aspect, Slope,
FlowDirection, etc. can simply extend
InOutCommandSpec and avoid having to re-
implement the exact same functionality.

This helper implements the setting of the names of
inputs and outputs to the command.

• Commands as indivisible, atomic units of
geoprocessing functionality

• These devices allow the GEOLEM compound
commands to develop sophisticated methods
of reasoning, sometimes described as business
logic, without the constraints common to many
of the languages associated with GIS.

4.1.2 CompoundCommands

Compound commands are intended to allow
sequences of simple commands to be created. In
addition, compound commands allow logic to be
associated with these sequences. Implementations
of this interface are intended to provide a way to

encode high level representations corresponding to
the semantics of a type of geographic feature. The
CompoundCommandSpec box at the lower left of
Figure X shows that this is an interface which
extends the CommandSpec. Classes that implement
CompoundCommandSpec, such as
HillslopeMethod, are able to enumerate all of the
CommandSpec objects that will be referenced
within that class. Put another way, a compound
command is able to reveal all of the simple GIS
commands that it will use (with the
getCommandSpec() method). The significance of
this will be discussed below. In addition, the
implementation of a CompoundCommandSpec
interface is expected to extend the
AbstractCommandSpec, thereby gaining access to
standard methods such as execute().

Figure 4. Inheritance Hierarchy of a Compound
Command, HillslopeMethod

4.1.3 ParameterProvider

The third main type of function that GEOLEM
exposes is the parameter provider. This concept is
intended to be a generic way to derive new
information, most likely parameters, based on an
input map of geographic features and some
methodology fixed within the implementation of
the parameter provider. This idea is represented by
the ParameterProviderSpec interface, shown at the
upper left of Figure 5 below. The interface defines
two significant methods. The first is getParam().
This method is explicitly designed to return a data
object, some form of which will ultimately be
returned to the environmental simulation model.
Most commands and compound commands return
only a character string indicating whether or not an
operation has succeeded. The second method,
setDimension(), associates the particular parameter
provider with the input map of geographic features,
alluded to above. The term dimension, introduced
in the previous chapter, is used to refer to the map
of geographic features that the methodology
contained within the parameter provider will be
applied to. Figure 5 shows an example of a
parameter provider implementation designed to
derive the median elevation for a set of geographic

features (each feature is regarded as a zone in this
context).

Figure 5. Inheritance Hierarchy of a Compound
Command, HillslopeMethod

Besides these three concepts there is the Core
GEOLEM class which maps the specifications of
basic GIS commands to some GIS server. It uses
XML configuration files, which describe how a
generic GIS specification gets mapped into a GIS
call. This can be understood by a real GIS. Up to
now, there are GEOLEM prototype bindings to
ARC GIS 9.0 beta via JNI/Python and COM.

5. APPLICATION PRMS

For the PRMS model a following scenario can be
applied to derive the parameter hru_elev (the
elevation value for each hydrological response
unit) using GEOLEM:

Figure 6. Scenario diagram depicting the PRMS
usage of GEOLEM

The delineation hru_elev requires the application
of CompoundCommand

ParameterElevationMedian. The HillslopeMethod
itself uses simple GIS commands such as
FlowDirection, FlowAccumulation, etc. and a
ZonalStatistics command to generate a value array,
which can be consumed by the model. The
sequence diagram shown in Figure 6 depicts the
sequencing of interactions between several
components in GEOLEM. The Application
Schema object describes in XML the dependencies
of the hru_elev parameter, its dimensions, data
input, and optional unit conversion (Figure 7).
Such ApplicationSchema represent the backbone
of GEOLEM. They express the model/modeling
framework requirements of model parameter data.

<xprop name="geolem">
 <xprop name="applicationschema">
 <xprop name="prms">

 <xprop name="hru_elev">
 <entry name="cmd">
 geolem.spec.gp.ParameterElevationMedian
 </entry>
 <entry name="dimension">
 nhru
 </entry>
 <entry name="type">
 double
 </entry>
 <entry name="units">
 feet
 </entry>
 </xprop>

 <xprop name="nhru">
 <entry name="cmd">
 geolem.spec.gp.HillslopeMethod
 </entry>
 </xprop>

 </xprop>
 </xprop>
</xprop>

Figure 7. GEOLEM ApplicationSchema fragment
for PRMS

A detailed description of the XML syntax would
exceed the length and scope of this paper, but can
be found under http://oms.ars.usda.gov/geolem.

A model such as PRMS which is using the
ApplicationScheme in Figure 7 is only required to
add the code

double hru_elev[] =

 (double[])GEOLEM.getParam(“prms/hru_elev”);

to obtain the HRU elevation data as a array of
doubles. This call causes GEOLEM to invoke the
orchestration of the lookup scenario shown in
Figure 6 to generate these values.

6. CONCLUSIONS

The GEOLEM effort represents a significant
undertaking to simplify the usage of Geographical
Information Systems for models and modeling
frameworks. It is actually prototyped with
frameworks such as the Object Modeling System
(OMS) (David et.al 2002) amd PRMS and will be
adapted to FRAMES in conjunction with ESRI
GIS products. A prototype implementation using
the ESRI ARC GIS 9.0 demonstrated the
feasibility to delineate and derive parameter for
PRMS in OMS.

The overall expected benefits of the GEOLEM
project and its implementation can be summarized
as follows:

• Easier exchange of scientific expertise due to
improved interoperability of spatial modeling
applications in modeling frameworks among
the agencies and other institutions

• Leveraging and saving the investments being
made in simulation model development/GIS
adaptation, data-management and visualization
for all project partners and avoid duplication
of development efforts.

• Highly efficient integration of new spatial
simulation models into existing GIS solutions
and easier adaptation of models on new
versions of COTS GIS packages without
model reimplementation.

• Establishing an informal and formal
collaboration platform by means of a model
metadata standard and template reference
library implementation, which is seen as the
foundation for other interagency efforts like
“Data Representation and Interchangeability”

• Offer model developer a path for “better”
handling of meta information for future model
application by providing “executable”,
operational meta-info; meta-info becomes a
part of the execution model, rather being
optional documentation “sugar”.

7. ACKNOWLEDGEMENTS

This work is supported by the Interagency Steering
Committee (MOU) on Multimedia Environmental
Models, Workgroup 1 on ‘Software Systems
Designs and Implementation for Environmental
Modeling’. It is funded by the Environmental
Protection Agency EPA. Thanks to Gerry Laniak
(from EPA) for his visionary lead of the working
group and the support of this effort.

8. REFERENCES

David O., S.L. Markstrom, K.W. Rojas, L.R.
Ahuja, and I.W. Schneider (2002). The
Object Modeling System, In: Agricultural
System Models in Field Research and
Technology Transfer, L. Ahuja, L. Ma, T.A.
Howell, Eds., Lewis Publishers, CRC Press
LLC, 2002: 317—331.

Leavesley, G. H., R. W. Lichty, et al. (1983).
Precipitation-runoff modeling system--User's
manual, U.S. Geological Survey: 207.

Leavesley, G. H., G. E. Grant, et al. (1996). A
modular modeling approach to watershed
analysis and ecosystem management.
Watershed '96 A National Conference on
Watershed Management, U.S. Government
Printing Office.

McDonald, M. G. and A. W. Harbaugh (1988). A
Modular Three-Dimensional Finite-
Difference Ground-Water Flow Model, U.S.
Geological Survey

OpenGIS Consortium (2003). GO-1: Geographic
Objects Initiative, OpenGIS Consortium.
2003.

Robinson, V. B. and D. S. Mackay (1995):
"Semantic modeling for the integration of
geographic information and regional
hydroecological simulation management.
Computers Environment and Urban Systems
19(5-6): 321-339.

Taylor, K., G. Walker, et al. (1999). "A framework
for model integration in spatial decision
support systems." International Journal of
Geographical Information Science 13(6):
533-555.

Viger, R. J., S. L. Markstrom, et al. (1998). The
GIS Weasel - An Interface for the Treatment
of Spatial Information Used in Watershed
Modeling and Water Resource Management.
First Federal Interagency Hydrologic
Modeling Conference, Las Vegas, Nevada.

