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Abstract:     Environmental models and modeling frameworks (MF) typically do not represent geographic 
information in a way that enables the direct translation of this information between geographic information 
systems (GIS) and the model or modeling framework. Parameters of the characteristics of geographic features 
are processed as part of a model’s mathematical solution and are thus explicitly represented in the model. In 
addition to the lack of semantic definition of geographic information in the environmental modeling process, 
current modeling approaches suffer from a lack of interoperability. The GEOLEM (Geospatial Object Library 
for Environmental Modeling) project forms a interagency working group which implements GEOLEM as a 
middleware solution (i) for the definition, storage, and manipulation of geographic metadata and (ii) for the 
transformation of information from the form of one context into another based on metadata specification (e.g. 
from the spatial data formats of GIS into the parameter organization of an environmental model). The purpose 
of this system is to eliminate the need for GIS-specific knowledge in the modeling framework and model-
specific knowledge in the GIS. More specifically, GEOLEM will result in Modeling Frameworks being able 
to specify methods conceptually for the (i) Delineation of geographic features, (ii) Parameterization of 
geographic features, (iii) Visualization of model and GIS data entities, and (iv) the Exploration of model and 
GIS data entities. 
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1. INTRODUCTION  

Environmental models and modeling frameworks 
typically do not represent geographic information 
in a way that enables the direct translation of this 
information between geographic information 
systems (GIS) and the model or modeling 
framework. Parameters of the characteristics of 
geographic features, such as area and volume, are 
processed as part of a model’s mathematical 
solution and are thus explicitly represented in the 
model. Information about the specific geometry or 
location of the geographic features whose behavior 
is being simulated is rarely represented explicitly 
in the model. The specification of methods needed 
to generate parameters describing the geographic 
features, or to actually delineate those geographic 
features in the first place, are never represented 
within the model. Further, the semantic definition 
of geographic feature types and their parameters 
are not represented within models. While 

environmental models are not expected to actually 
derive input geographic information, they should 
provide information about how to derive that 
information. 

In addition to the lack of semantic definition of 
geographic information in the environmental 
modeling process, current modeling approaches 
suffer from a lack of interoperability. In all cases 
where GIS data are used in an environmental 
modeling context, it is necessary to develop 
algorithms or methods that provide for the 
translation between the two representations of 
spatially relevant information. Translation 
algorithms developed to date have been tightly 
designed to the needs and characteristics of 
specific models and GISs. As a result, two 
increasingly important types of problems present 
themselves: (i) resource, (ii) technical. The 
resource problem occurs because the translation 
algorithms are not, by and large, reusable. This 



 

means that each connection between a specific 
pairing of an environmental model and a GIS 
requires a unique translation algorithm, which, in 
turn, requires new resources to repeatedly solve the 
same conceptual problem 

The more significant problem resulting from 
incompatible translation algorithms is technical in 
nature. Because each translation algorithm is 
unique to a model/GIS combination, sharing and 
coupling of environmental models and GIS 
methods is hindered. Once an environmental model 
or modeling framework has been “wired” to a GIS, 
it should automatically gain access to a wide array 
of community-developed geoprocessing libraries 
and geographic visualization software.  To achieve 
this, standard protocols should be established for 
translating spatial information between GIS, 
environmental models, and other tools common to 
environmental modeling tasks. In addition, a 
metadata nomenclature should be established for 
referencing the array of geographic feature types 
relevant to environmental modeling. With these 
standards in place, generic sets of information 
translation adapters can be developed such that 
once a modeler has “mapped” their unique 
nomenclature to the standard nomenclature, 
transfer of information to and from GIS can more 
readily be automated. In addition, whenever a new 
geo-processing or visualization tool is developed in 
conformance with these standards, the tool is 
immediately available to the larger community. 

 

2. BACKGROUND / RELATED WORK 

Despite the lack of semantic description about 
geographic information in simulation models, 
tighter integration of GIS and simulation models 
has been sought. One approach has been to put 
“the model in the GIS”. Although GIS and 
computing resources have evolved to a point that 
implementation of an environmental model within 
a GIS is possible, programming within the confines 
of a GIS has not become the norm. This is largely 
due to the relatively poor computational efficiency 
of the programming languages of most GISs and 
the burden of interacting directly with GIS data 
structures. Developers typically prefer to design 
models that ingest the simplest form of spatial data 
possible and concentrate their development efforts 
on the simulation of environmental processes. 
Examples of this have ranged from using GIS as a 
map-based interface for the selection of pre-
existing data and model execution (US 
Environmental Protection Agency) to the creation 
of model inputs and model execution (Robinson 
and Mackay 1995) to a full integration of 

environmental models into spatial decision support 
systems (Taylor, Walker et al. 1999). 

Alternatively, putting “the GIS in the model” has 
largely been rejected because the complexity of 
implementing GIS within models or model 
frameworks is not cost-effective. This approach 
has been most clearly adopted in groundwater 
models, where the modeling response units are 
delineated according to relatively simplistic 
methodologies such as finite difference or finite 
element meshes (McDonald and Harbaugh 1988). 
Although these models do not normally generate 
the original maps of modeling response units, they 
do exploit the spatial topological connections 
between units. 
 
As a result, a third approach has gained popularity. 
GIS is used as a standalone pre- or post-processor 
for a model, reducing spatial data to the simplistic 
descriptions expected by the model.  The USGS 
GIS Weasel is an example of this (Viger, 
Markstrom et al. 1998). A GIS operator usually 
works with a modeler to manipulate and digest 
spatial data into a file or set of files that will 
eventually be read by the model. The knowledge 
that was used to apply the GIS appropriately 
usually resides in the mind of modeler and the GIS 
operator. This knowledge is not normally 
formalized or codified. In the case of well-
established models, dedicated GIS software 
applications may be developed as pre- or post-
processors. Although these applications do serve to 
codify the knowledge used to delineate geographic 
features and derive parameters of those features, 
they fail to enable the re-use of those geo-
processing methodologies in newly created models. 
 
 

 
Figure 1. GIS, VIZ, and MF components with 

distinct internal “native data models” and custom 
integration directly mapping between specific 

native data models.  

 
A fourth approach, depicted in Figure 1, seeks a 
looser coupling of GIS, MFs, and visualization 
software (Viz). This configuration relies on 
communication between discrete software 
components, rather than merging functionalities of 



 

disparate components into a monolithic piece of 
software (Leavesley, Grant et al. 1996). 
 
This approach towards the integration of GIS and 
environmental models will be used as a starting 
point for the research proposed here. 
 

3. GEOLEM DESIGN 

In order to be able to allow software components 
to more readily interconnect in a generic way, 
Figure 2 shows a middleware architecture that 
allows the most effective data model for each 
software component to continue being used by 
each respective component, yet facilitate the 
movement of information across these contexts. 
This middleware is referred here as the Geographic 
Object. The authors seek to leverage the ideas of 
the OGC Geographic Object initiative (OpenGIS 
Consortium 2003), and participate, if feasible, in 
this effort. One way to describe the role of the 
Geographic Object is that it maps the relevant 
details of one context to those of another. 
 
3.1  Objective 

The objective of GEOLEM is to enable the 
systematic integration of MFs and GIS during (i) 
pre-run, (ii) run-time, and (iii) post-run phases of 
modeling. In addition, this effort seeks to eliminate 
the need for GIS-specific knowledge in the 
environmental model and environmental model-
specific knowledge in the GIS. More specifically, 
this effort will result in MFs being able to specify 
methods for the 
 
• Delineation of geographic features   
• Parameterization of geographic features  
• Visualization of model and GIS data entities 
• Exploration of model and GIS data entities 
 
Central to achieving these goals is the development 
of template metadata specifications for geographic 
information to be used by models developed in the 
MFs. The developer of an earth science model will 
be able to use previously specified types of 
geographic features in that model. These template 
specifications will not significantly alter the style 
of data model (e.g. arrays of parameters) typically 
found within traditional earth science modeling 
components. 
 
3.2  Approach 

This mapping is represented by chains of arrows 
that connect one external component to another. 
Consider the chain at the bottom of Figure 2, 
representing the MF requesting information that is 
generated in the GIS. The MF communicates with 
the Geographic Object, requesting information in a 
format suitable to the MF. The Geographic Object 
understands that the information requested by the 
MF corresponds to some GIS-based information. 
Based on this understanding, the Geographic 
Object requests the appropriate information from 
the GIS. Once this GIS information is returned 
from the GIS to the Geographic Object, the 
Geographic Object then uses its understanding of 
the MF-GIS correspondence to return a set of MF-
appropriate information to the MF. The broad 
arrows represent component specific 
communication. The thin, black arrow represents 
the work that the middleware does to translate 
information from one context into another. In our 
example, this could be the reduction of shape files 
to arrays of parameters.   
 
The benefit of this mapping is that the MF does not 
need to understand how to make low-level requests 
to the GIS, nor does it need to know how to extract 
what it needs from the alien data formats of the 
GIS. It needs only to know how to make request to 
the Geographic Object for the higher-level 
information that it needs. 
 
To extend the sample explanation of the arrow 
chain started above, let the information requested 
by the MF be the elevation of hillslopes within a 
watershed. The Geographic Object will understand 
that the MF ultimately wants to receive an array of 
real numbers, because the name of the parameter 
within the MF, say elev , has an association within 
the Geographic Object middleware to a description 
which states the numerical format of elev. The 
Geographic Object will also have a specification 
that the method used to derive the real numbers in 
the array elev  is to find the median value in the 
distribution of elevations within each hillslope. In 
addition, the Geographic Object middleware will 
know about a hillslope and how it should be 
derived. Although it is obvious to human users that 
in order for the median elevations of hillslopes to 
be derived, hillslopes must first be delineated, this 
information is not known to the MF which simply 
knows that it needs an array of real numbers. The 
Geographic Object will manage this relationship 
 
 



 

 

Figure 2. Integration of software components based on middleware (OGC Geographic Object) conceptual 
model.

4.  IMPLEMENTATION 

Figure 3 shows how an environmental simulation 
model can access GIS functionality. The model is 
represented on the left, in this case by PRMS 
(Precipitation Runoff Modeling System, Leavesley 
et al.,1983). The model is intended to make high-
level calls to GEOLEM, based on the internal 
vocabulary of the model. The rationale is to avoid 
as much as possible changing the internal workings 
of the pre-existing model or modeling framework. 
Requests will typically be for parameters. 
GEOLEM will be able to take these high-level 
requests and translate their meaning into generic 
terms. 

 

 

Figure 3. General structure of the connections 
between an environmental simulation model, 

GEOLEM, and a GIS server. 

 

There are three different linguistic contexts in the 
scenario described above: (i) the environmental 
simulation model, (ii) GEOLEM, and (iii) the GIS 
server. In order to communicate across these 

contexts, two different translations are made. The 
first is from the language of the model into that of 
GEOLEM and the second is from the language of 
GEOLEM into that of the GIS server. The first 
translation relies on what is referred here as the 
conceptual schema for the environmental model. 
This is a metadata store that encodes the 
conceptual model, described in the previous 
chapter, for geographic information within the 
environmental simulation model. The conceptual 
schema is configured to relate the elements of 
conceptual model to analogs available within the 
GEOLEM library. 

 

4.1 GEOLEM Functions 

The GEOLEM library, which is not shown in 
Figure 3, contains several types of functions: 
commands, compound commands, and parameter 
providers. These functions are intended to provide 
a generic way to use basic GIS functions. These 
basic functions can be grouped to develop more 
complex geo-processing methodologies or they can 
be used to extract information from a GIS.  As 
noted in Figure 3, GEOLEM is not a GIS itself and 
relies on the existence of a GIS server with which 
it can communicate. 

 

4.1.1 Commands 

Commands are used here to denote simple, single-
step functions. Examples of some commands could 



 

be “calculate aspect” or “derive a watershed”. 
Figure 4 depicts the class hierarchy used to create 
such a command. 

 

 

Figure 3. Inheritance Hierarchy of the simple GIS 
Command, Aspect. 

 

The CommandSpec box on the left is an interface, 
meaning that it is merely a general definition that is 
not actually implemented. It serves to set a 
minimum level of functionality that all descendent 
functions must support. The 
AbstractCommandSpec is the basic implementation 
of the CommandSpec interface. Note that this 
implementation is denoted by the dashed arrow 
accompanied by the <<realize>> label. At the right 
of Figure 3, the Aspect class is what could be 
thought of as an actual GIS command. It extends 
the InOutCommandSpec, which in turn extends the 
AbstractCommandSpec. Extension, a basic 
principle of object oriented design, effectively 
allows new functionality and properties to be 
added to a general class. The new functionality and 
properties are encoded in a sub-class. The sub-
class, by referencing the more general super-class, 
will gain all the functionality and properties that 
existed in that original class. InOutCommandSpec 
merely serves as a helper to add some functionality 
that is likely to be widely used by other actual GIS 
commands. Commands like Aspect, Slope, 
FlowDirection, etc. can simply extend 
InOutCommandSpec and avoid having to re-
implement the exact same functionality.  

This helper implements the setting of the names of 
inputs and outputs to the command. 

• Commands as indivisible, atomic units of 
geoprocessing functionality 

• These devices allow the GEOLEM compound 
commands to develop sophisticated methods 
of reasoning, sometimes described as business 
logic, without the constraints common to many 
of the languages associated with GIS. 

4.1.2 CompoundCommands 

Compound commands are intended to allow 
sequences of simple commands to be created. In 
addition, compound commands allow logic to be 
associated with these sequences. Implementations 
of this interface are intended to provide a way to 

encode high level representations corresponding to 
the semantics of a type of geographic feature. The 
CompoundCommandSpec box at the lower left of 
Figure X shows that this is an interface which 
extends the CommandSpec. Classes that implement 
CompoundCommandSpec, such as 
HillslopeMethod, are able to enumerate all of the 
CommandSpec objects that will be referenced 
within that class. Put another way, a compound 
command is able to reveal all of the simple GIS 
commands that it will use (with the 
getCommandSpec() method). The significance of 
this will be discussed below. In addition, the 
implementation of a CompoundCommandSpec 
interface is expected to extend the 
AbstractCommandSpec, thereby gaining access to 
standard methods such as execute(). 

 

 

Figure 4. Inheritance Hierarchy of a Compound 
Command, HillslopeMethod 

 

4.1.3 ParameterProvider 

The third main type of function that GEOLEM 
exposes is the parameter provider. This concept is 
intended to be a generic way to derive new 
information, most likely parameters, based on an 
input map of geographic features and some 
methodology fixed within the implementation of 
the parameter provider. This idea is represented by 
the ParameterProviderSpec interface, shown at the 
upper left of Figure 5 below. The interface defines 
two significant methods. The first is getParam(). 
This method is explicitly designed to return a data 
object, some form of which will ultimately be 
returned to the environmental simulation model. 
Most commands and compound commands return 
only a character string indicating whether or not an 
operation has succeeded. The second method, 
setDimension(), associates the particular parameter 
provider with the input map of geographic features, 
alluded to above. The term dimension, introduced 
in the previous chapter, is used to refer to the map 
of geographic features that the methodology 
contained within the parameter provider will be 
applied to. Figure 5 shows an example of a 
parameter provider implementation designed to 
derive the median elevation for a set of geographic 



 

features (each feature is regarded as a zone in this 
context). 

 

Figure 5. Inheritance Hierarchy of a Compound 
Command, HillslopeMethod 

Besides these three concepts there is the Core 
GEOLEM class which maps the specifications of 
basic GIS commands to some GIS server. It uses 
XML configuration files, which describe how a 
generic GIS specification gets mapped into a GIS 
call. This can be understood by a real GIS. Up to 
now, there are GEOLEM prototype bindings to 
ARC GIS 9.0 beta via JNI/Python and COM.  

 

5. APPLICATION PRMS 

For the PRMS model a following scenario can be 
applied to derive the parameter hru_elev (the 
elevation value for each hydrological response 
unit) using GEOLEM: 

 

 

Figure 6. Scenario diagram depicting the PRMS 
usage of GEOLEM 

 

The delineation hru_elev requires the application 
of CompoundCommand 

ParameterElevationMedian. The HillslopeMethod 
itself uses simple GIS commands such as 
FlowDirection, FlowAccumulation, etc. and a 
ZonalStatistics command to generate a value array, 
which can be consumed by the model. The 
sequence diagram shown in Figure 6 depicts the 
sequencing of interactions between several 
components in GEOLEM. The Application 
Schema object describes in XML the dependencies 
of the hru_elev parameter, its dimensions, data 
input, and optional unit conversion (Figure 7). 
Such ApplicationSchema represent the backbone 
of GEOLEM. They express the model/modeling 
framework requirements of model parameter data.  
 

<xprop name="geolem"> 
 <xprop name="applicationschema"> 
  <xprop name="prms"> 
 
   <xprop name="hru_elev"> 
     <entry name="cmd">  
   geolem.spec.gp.ParameterElevationMedian 
      </entry> 
     <entry name="dimension"> 
        nhru 
      </entry> 
     <entry name="type"> 
        double 
     </entry> 
     <entry name="units"> 
        feet 
      </entry> 
   </xprop> 
 
   <xprop name="nhru"> 
     <entry name="cmd">  
       geolem.spec.gp.HillslopeMethod 
     </entry> 
   </xprop> 
 
  </xprop>  
 </xprop>  
</xprop>  

 

Figure 7. GEOLEM ApplicationSchema fragment 
for PRMS 

 

A detailed description of the XML syntax would 
exceed the length and scope of this paper, but can 
be found under http://oms.ars.usda.gov/geolem. 

A model such as PRMS which is using the 
ApplicationScheme in Figure 7 is only required to 
add the code  

double hru_elev[] =  

   (double[])GEOLEM.getParam(“prms/hru_elev”); 

to obtain the HRU elevation data as a array of 
doubles. This call causes GEOLEM to invoke the 
orchestration of the lookup scenario shown in 
Figure 6 to generate these values. 

 

6.  CONCLUSIONS 



 

The GEOLEM effort represents a significant 
undertaking to simplify the usage of Geographical 
Information Systems for models and modeling 
frameworks. It is actually prototyped with 
frameworks such as the Object Modeling System 
(OMS) (David et.al 2002) amd PRMS and will be 
adapted to FRAMES in conjunction with ESRI 
GIS products. A prototype implementation using 
the ESRI ARC GIS 9.0 demonstrated the 
feasibility to delineate and derive parameter for 
PRMS in OMS. 

The overall expected benefits of the GEOLEM 
project and its implementation can be summarized 
as follows: 

• Easier exchange of scientific expertise due to 
improved interoperability of spatial modeling 
applications in modeling frameworks among 
the agencies and other institutions 

• Leveraging and saving the investments being 
made in simulation model development/GIS 
adaptation, data-management and visualization 
for all project partners and avoid duplication 
of development efforts. 

• Highly efficient integration of new spatial 
simulation models into existing GIS solutions 
and easier adaptation of models on new 
versions of COTS GIS packages without 
model reimplementation. 

• Establishing an informal and formal 
collaboration platform by means of a model 
metadata standard and template reference 
library implementation, which is seen as the 
foundation for other interagency efforts like 
“Data Representation and Interchangeability” 

• Offer model developer a path for “better” 
handling of meta information for future model 
application by providing “executable”, 
operational meta-info; meta-info becomes a 
part of the execution model, rather being 
optional documentation “sugar”. 
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