LOGY TRANSFER

luene and Hexahy-

CHAPTER 15

The Object Modeling System

Olaf David, Steven L. Markstrom, Kenneth W. Rojas, Lajpat R. Ahuja and Lan W. Schneider

CONTENTS
TIVETOTUCTION «1evereererreeersesssssesessser s 317
Background and Objectives OF the OMS PLOJECT weeuuirriiriemciriimmnsssssreismsss s 318
BASIC OMS PHINCIPIES rovvvvvvveeereamisseerresssssmssss s 319
IVEOQUIAILY oo seeeeeeseeeemssssss s 319
OMS FEAIMEWOTK o1 .eoeeeereereserrsssseessses oo 320
OMS SySEMm CRATACIETISHCS w.vvvrressssoosssssssmmsssss s 320
OMS Modules and API'%21
Legacy Code TPIEIMEITATION ..oooorvssssveseresnensssssssssssessss s 323
DACHONATY FIAMEWOTK oo veremssasssssssssssssssssss e s s 323
OMS Dictionary Framework Architecture Design Considerationscoceweeeeees 325
Modeling System GUI DESign o s 325
OMS Model Views and DEPIOYMENT ... s 326
Example Application of PRIVIS oo eeeeeeeaeea e 327
COMCTUSION . esseseeeeosseessssseessss e 328
FUEUTE DEVEIOPIMEIIES ovcoooeorersesssssreesmssssss s s 329
P . T R 329
RETEIEIICES erveeseseeeseeessssssseesssiss e 329

INTRODUCTION

The problems facing both users and developers of natural resource models are becoming much
more complex. Understanding human management issues such as farming practices, erosion control,
pesticide and fertilizer application, reservoir management and habitat restoration become com-
pounded when viewed within the physical, hydrological. chemical and biological responses of the
natural world. Computer simulations for conceptualization, prediction and management of agricul-
tural areas, watersheds, water supply and environmentally sensitive sites are likewise becoming
more complex. The interdisciplinary nature of these problems usually requires taking into account
a significant number of different models, alternatives, data sources and domain experts.

Much domain-specific disciplinary expertise has been developed and captured in the form of
computer simulation models. These models usually represent the efforts of an individual or a small

1-56670-0563/02/$0.00+51.50 317
© 2002 by CRC Press LLC

LR

318 AGRICULTURAL SYSTEM MODELS IN FIELD RESEARCH AND TECHNOLOGY TRANSFER

group of scientists and are consequently very focused in their scope. Several of these models must
often be applied within the context of a single project application. Although these models may
share much in common, there may be conflicting data, scales. methodologies, file formats, or even
compulter hardware and software requirements for these models. To overcome these limitations
they are often rebuilt to meet an appropriate system delineation.

On the other hand, some large, monolithic process models have been designed and implemented
to cover a range of simulation alternatives (Abel, 1994). Many of these models are closed, stand-
alone systems. They require fixed input/output data format with no capability to interface with
other models. Many of these models are still operating in batch mode. Modifications and extensions
to a model are often handled as additions made to the main body of code developed years ago.
Such a tightly wrapped structure limits this integration with other models and makes their update
and maintenance difficult.

An important effort in environmental simulation model design, therefore, is to enhance modu-
larity, reusability and interoperability of both science and auxiliary components. Leavesley et al.
(2002) pointed out that models applied for different systems or sub-systems required different levels
of detail and- comprehensiveness, which are driven by problem objectives, data constrains and
spatial and temporal scales of application.

Reusability can be increased by establishing standard simulation module libraries. These librar-
ies are comprised of components of simulation models and provide basic building blocks for a
number of similar applications. They are designed to allow interoperability, which is essential for
the incorporation of various scientific disciplines. Module libraries have been successtully applied
1n several domains such as manufacturing systems, transport and other systems (Top et al., 1997;
Breunese et al.. 1998; Prachofer, 1996). An advanced modular modeling framework based on the
creation of a library of science and utility modules offers an exciting possibility for developing
customnized agricultural system models in the 21st Century. These models will use the best science
available for their purpose and will be easy to update and maintain. The library may lead to
standardization of science, tools and interfaces and will serve as a reference and coordination
mechanism for model developers and future research.

This chapter gives an overview of the efforts made in adopting modular modeling principles
for the construction and application of natural systems models through the Object Modeling System
(OMS) framework. The chapter presents:

1. OMS project background and objectives
2. Basic OMS principles

3. OMS architecture and implementation
4. Results of a model application example

Background and Objectives of the OMS Project

The OMS Project is an interagency project between the USDA-ARS (Agricultural Research
Service), USGS (U.S. Geological Service) and USDA-NRCS (Natural Resource Conservation
Service). The past experiences of the agencies indicated that the development of comprehensive,
multidisciplinary simulation models was a very expensive process ($15 to $30 million per model).
Many development activities were duplicated among different modeling projects; for example, the
hydrologic components in crop models, water quality models and erosion models. The duplicated
components generally used different levels of detail and time scales, whereby they did not give the
same results in hydrology and, thus, other outputs. Furthermore, the maintenance of several large,
monolithic models has been a problem. These considerations led to the initiation of the OMS Project.

The overall project goal is the development of OMS, an integrated modeling framework, which
allows integration of models, founded on a standard library of components, tools and data. Models
developed within OMS will be based on representing different scientific approaches with regard

THE OBJECT MODELING §

to components that addres
of the OMS project are i

Identify modeling li
stmulation models.
Formalize the linka
Develop generic $0
. Develop the framer

—

L WO b2

To provide compreht
part of the framework:

1. A module-building
framework (this adi
A module reposito
model (types of m
access- and systen
3. A model builder tl
verify data connec
4. A dictionary fram
extended semantic
5. An extensible use
development and
for database mang

g

Modularity

The fundamental ai
models. New scientific
dated by other scientist
development. Unfortur
software constructs, sci
tation there is usually

It is possible that t
gained through better s
into components may 1¢
most notably Zeigler (1
This is related to a mc
DeRemer and Kron (]
system is an essential
individual modules.” V
modules whose interac
complexity inherent in
easier to understand c:

Modularization has
inherent structure of res
out different degrees ¢
loosely coupled model
conceptualizations of 1

HNOLOGY TRANSFER

»f these models must
h these models may
file formats N .

me these

ied and implemented
:Is are closed, stand-
ity to interface with
tions and extensions
eveloped years ago.
I makes their update

18 to enhance modu-
nts. Leavesley et al.
yired ditferent levels
data constrains and

raries. These librar-
ilding blocks for a
hich is essential for
successfully applied
1s (Top et al., 1997,
ework based on the
ility for developing
use the best science
ibrary may lead to
e and coordination

nodeling principles
't Modeling System

ficultural Research
urce Conservation
of comprehensive,
nillion per model).
s; for example, the
:ls. The duplicated
ey did not give the
ze of several large,
{ the OMS Project.
framework, which
s and data. Models
saches with regard

THE OBJECT MODELING SYSTEM 319

to components that address data constrains and spatial/temporal scale of application. The objectives
ot the OMS project are to: ~

1. Identify modeling library parts (modules or components) and glean them from existing nonmodular
simulation models.

Formalize the linkages between these components to support model building.

Develop generic software tools to support models and modeling.

Develop the framework which supports these objectives.

NS

To provide comprehensive modeling assistance. the following functional components will be
part of the framework:

1. A module-building component that will facilitate the integration of existing (legacy) code into the
framework (this adaptation support will simplify the technical procedure for module implementation)

2. A module repository that will contain modules that can be readily utilized to assemble a working

model (types of modules in the library will include science-, control-, utility-, assessment-, data

access- and system modules)

A model builder that will assemble modules from the module library into executable models and

verify data connectivity and compatibility in scale and comprehensiveness

4. A dictionary frumework that will manage extended modeling data type information and provide
extended semantics checking for module connectivity verification

5. An extensible user interface that will facilitate an appropriate user interaction for general model
development and application (it will be supported by a number of contributing software packages
for database management, visualization and model deployment)

22

BASIC OMS PRINCIPLES

Modularity

The fundamental and underlying approach of OMS is to apply modular design to simulation
models. New scientific results are generally developed piecewise; each step is reviewed and vali-
dated by other scientists in the community. A similar approach should be taken to model software
development. Unfortunately. when formalizing scientific methods and research into operational
software constructs, scientists tend to start from a scratch. Moreover, when it comes to implemen-
tation there is usually a lack of understanding of appropriate software design.

It is possible that better understanding of the behavior of complex physical systems could be
gained through better software practices. Specifically, dissaggregation of large and complex systems
into components may reveal inter- and intra- relationships. This has been the interest of many authors,
most notably Zeigler (1990), who called this “modeling in the large,” and of Cota and Sargent (1992).
This is related to a more general software concept known as “programming in the large.” Earlier,
DeRemer and Kron (1976) pointed out: “... structuring a large collection of modules to form a
system is an essentially distinct and different intellectual activity from that of constructing the
individual modules.” With programming in the large, the emphasis is on partitioning the work into
modules whose interactions are precisely specified. Modularity is the overall key to coping with the
complexity inherent in large systems. Disaggregating these systems into smaller subsystems that are
easier to understand can be achieved on a “divide and conquer” (Pidd and Castro, 1998) strategy.

Modularization has not been a common technique in practical model development. although the
inherent structure of resource simulation models support modularization. Leavesley et al. (2002) pointed
out different degrees of modularization: fully process modules and models; fully coupled models;
loosely coupled models; and uncoupled models for decision support systems, which are all important
conceptualizations of model integration and must be design principles for any modeling framework.

320 AGRICULTURAL SYSTEM MODELS IN FIELD RESEARCH AND TECHNOLOGY TRANSFER

Several different modular approaches have been applied to watershed models (Singh, 1995). One
of the earliest modular model development efforts was done for the SHE (European Hydrological
System) Model (Abbot et al., 1986; Ulgen et al., 1991). The Precipitation Runoff Modeling System
(PRMS) (Leavesley et al., 1983) was modularized from a monolithic version and implemented in
the Modular Modeling System (MMS) (Leavesley et al., 1996). MMS was an early attempt by the
U.S. Geological Survey to support interactive model construction, requiring a specified module
structure. Recently, interest in the standardization of mode! software design has increased. Projects
such as APSIM (McCown, 1995) are based on these principles. Model standardiz

ation is also gaining
momentum within the environmental research and regulatory organjzations and agencies (Whelan
etal., 1997).

OMS development focuses on the following points to achieve a maximum benefit from
modularization:

* Modularization is the key concept to simulation model development. OMS provides an application
programming interface (API) for creating new modules. A master library of modules is also
available for simulating a variety of water, energy and biochemical processes.

* OMS allows the interactive construction of complex models. OMS graphical user interface (GUT)
components facilitate control of module connection, validity, consistency and completeness.

* An extended interface description for modules needs to be developed to specify data semantics.
This is important for interdisciplinary module development.

* OMS supports automated module documentation generation. A module communicates with other
modules through its public interface. Documentation generated from the module interface speci-
fication is sufficient to judge its suitability in a given simulation context,

* OMS potentially supports model scenario management and model customization through module
exchangeability. This requires a set of module alternatives stored in a specific module library for that
purpose. The library must organize this information and make the model fragments available for reuse.

The validation of module compatibility requires an advanced semantic representation of data objects
(variables, parameter, etc.) used to connect modules. This leads to the concept of data dictionaries
covering extended modeling related type information such a units, value ranges and description.

OMS Framework

The OMS framework is a domain-specific, reusable architecture with a set of interdependent
classes in an object-oriented language. The primary benefits of application frameworks in general
are modularity through well-defined and stable interfaces, reusability by using generic components,
extensibifity through hook methods and inversion of control through a reactive dispaiching mech-
anism. The different kinds of frameworks are distinguished by the ways of adapting the framework:
“black-box” and “white-box™ frameworks. The black-box framework contains abstract elements,
which needs to be specialized in the application. The white-box framework instead consists of
already implemented specific components, which needs to be selected and customized in an
application. OMS is fundamentally a white-box system as classified by the abstract hook method
{Fayad and Schmidt, 1997).

OMS SYSTEM CHARACTERISTICS

The OMS has the following characteristics:

1. OMS models are treated as hierarchical assembled components representing building blocks.
Components are independent and reusable software units implementing processing objects for
simulation models. They reside in a model library and are categorized into data access components,

el 3 il

THE OBJECT MODELING SY5

science components, ¢
described in the “OMS
OMS is able to integral
code, components writ
level more easily. This
3. The “knowledge”-back
variables and paramet
application. Dictionari
the component connec
This is described in th
4. OMS is extensible. Ext
tion. Extension packag
dictionary framework ¢
5. OMS scales from a fu
visualization and anal’
Model Views™ subsect

12

The approach being us
modeling. [tis an approach
i.e., system components w
coupled in a hierarchical
This conceptual approach
Because objects lack an exj
data flow was applied. An
hierarchical modules.

OMS Modules and API

An OMS module is a ¢
be complex or a single equ
the module will address. A
data objects, which are m
defining the interaction of
this interfuce. An OMS mu
methods. It consists of the

* The OMSComponent
mentation based on 1

» A module encapsulate
objects and other su
intermodule commur
may obtain a data ob

» A module encapsulab
Fortran, or C prograt

= BEach OMS module n
+ Init — The initm
the data objects.

¢ Run—The run n
objects and compx

the simulation ru

» (leanup—Thec
resources (i.c., m
method is called

ICHNOLOGY TRANSFER

dels (Singh, 1995). One
European Hydrological
moff Modeling System
on and implemented in
an early attempt by the
ng a specified module
has increased. Projects
rdization is also gaining
and agencies (Whelan

raximum benefit from

yrovides an application
ry of modules is also
ses.

al user interface (GUI)
ind completeness.
pecify data semantics.

mmunicates with other
nodule interface speci-

zation through module
module library for that
ients available for reuse.

zsentation of data objects
cept of data dictionaries
res and description.

a set of interdependent
| frameworks in general
ng generic components,
ctive dispatching mech-
adapting the framework:
itains abstract elements,
vork instead consists of
and customized in an
ie abstract hook method

enting building blocks.
- processing objects for
data access components,

THE OBJECT MODELING SYSTEM 321

science components, control components. utility components and system components. This 1s

described in the “OMS Modules and AP1” subsection.

OMS is able to integrate legacy code components. Due to automated wrapper generation for legacy

code, components written in languages such as Fortran can be embedded into OMS at the function

Jevel more easily. This is described in the “Legacy Code Implementation” subsection.

3. The “knowledge -backbone of OMS is the dictionary framework. It enables OMS to verify state
variables and parameters according to scientific nomenclatures during model development and
application. Dictionaries are also used to specify parameter sets, model control information and
the component connectivity. They are implemented in the Extensible Markup Language (XML).
This is described in the “Dictionary Framework” subsection.

4. OMS is extensible. Extension packages exist for different aspects in model development and applica-
tion. Extension packages are used for visual model assembly, model application, an interface to the
dictionary framework and GIS. This is described in the “Modeling System GUI Design™ subsection.

5. OMS scales from a full-featured, stand-alone development system with tools for model assembly,
nt. This is described in the “OMS

!J

visualization and analysis to a rantime Web service environme
Model Views” subsection.

The approach being used for component definition is based on modular, hierarchical system
modeling. It is an approach to complex dynamic system modeling where modutar building blocks.
i.e., system components with a well-defined interface in the form of input and output ports, arc
coupled in a hierarchical manner to form a complex system (Zeigler, 1990; Praehofer, 1996).
This conceptual approach was implemented by using object-oriented programming paradigms.
Because objects lack an explicit output interface the concept of input and output ports representing
data flow was applied. An application programming interface (AP1) was designed to implement

hierarchical modules.

OMS Modules and API

An OMS module is a piece of software implementing a specific function. This function might
be complex or a single equation. The scope and complexity of the module depends on the problem
the module will address. An OMS module is implemented as an object-oriented class that defines
data objects, which are manipulated by the module’s methods. A module has a public interface
defining the interaction of the module with its environment. All communications must go through
this interface. An OMS module has a single purpose, S0 it 18 restricted to a fixed set of interface

methods. It consists of the following components:

« The OMSComponent class of the OMS core library provides the APl for custom module imple-
mentation based on inheritance.

+ A module encapsulates modeling objects. These data objects can be input data objects, output data
objects and other submodules. The data objects are variables or parameter that are used for
intermodule communication. The module can be the creator and owner of the data object or it

may obtain a data object from other parts of OMS.

« A module encapsulates modeling fogic. OMS provides t

Fortran, or C programming language.

+ BEach OMS module must implement the following interfuce methods:

« TInit — The init method initializes the modules data objects. It is used to set the initial state of
the data objects. This method is called prior to a model simulation run.

« Run — The run method implements the computational part of & module. It operates on all data
objects and components with the results of the module processing. This method is called during
the simulation run and implements the process logic.

« Cleanup — The cleanup method performs finalizing tasks for the module. 1t will release system

). It can also be used for writing summary reports. This

he tools to implement the code in the Java,

resources (i.e., memory and sockets
method is called past model simulation run.

322 AGRICULTURAL SYSTEM MODELS IN FIELD RESEARCH AND TECHNOLOGY TRANSFER

This OMS module definition API is implemented in the Java programming language (Arnold et al.,
2000).

(b) Data Dictionary Entries (XML)

(a) OMS Module XML - Input/output slots

Descriptor - Classification
(XML) - Default values
- Module Meta Information
- Resource references 7

CSUUILT TSIV S

(c) Java OMS Component
Class (Class)

- Data object referencing

- Process implementation

(f) Documentation,/ !
i g |
E
|

- Legacy code bridge
- System dependent

(e) SubModules (XML)

Figure 15.1 Module components and relations in OMS.

From an OMS framework point of view, a module consists of several components important
for model development. The two main parts of a module include (see Figure 15.1):

* Module Interface Specification — This is represented by an XML descriptor (Figure 15.1a), the
public interface is exposed. This includes the input and output data as specified by the data
dictionary (Figure 15.1b), a reference to the module implementation component (Figure 15.1¢)
and sub-module descriptors (Figure 15.1¢).

* Module Implementation — The implementation of the Java OMSComponent class (Figure 15.1¢)
and the native libraries (Figure 15.1d) if there is a legacy code attached to the module.

This design has several implications:

1. Module connectivity can be validated by using its interface only. Because modules are referencing
data dictionary entries (e.g., parameter or variables), two modules can be connected if both are
referencing the same entry. In addition, an extended “type” verification of data objects allows a
more semantic type verification of proper data references among modules extending a simple “data
type-based” verification (Figure 15.1g).
Because the module interface is expressed in XML, modules can be implemented in different
programming languages. The design also takes architecture-dependent variations of resources
belonging to the model into account. Native libraries are referenced for different operating systems
and architectures (Figure [5.1h).
3. OMS uses automated documentation generation for the module interfaces based on XML style
sheets into HTML (Figure 15.16).

o

In summary, the benefit for an XML/Java combined description of modules results in sophisticated
system handling of this module for verification, architecture adaptation and documentation based
on 4 common resource.

Module data objects reside as attributes of each module. A module may encapsulate a number
of data objects depending on its complexity. Several factors need to be taken into considerations
when adding data objects (o a module:

g o ARG 50 Lz

i

L e Vengo i At Aoy

THE OBJECT MODELING SY<

« Data objects may be
publishing these data

» Public data objects ca
a previously publishet
the modeling framewt

/7
Module Declaration i pu
Declared objects. 8';
Initialized with data o
generated by o

OMS system
calls based on o

data dictionary content o

Figure 15.2 Data object dec

The declaration of dat
based on OMS API system
in Figure 15.4).

Legacy Code Impleme

Wrapping is a techniqu
architecture. Mapping inte
the access to this legacy ¢ -
tools, which generate glu
advantages:

« Keeping and reusing
» Moving step by step
+ Accelerated introduc
e “Secparation of conce

A module contains a se
ponent. A module may imj
run() and cleanup() for
specific editors for setting
menting a kind of preproc

OMS uses a sophistic:
OMS framework tools suj
Figure 15.3 shows how m«
variables and parameters |

Dictionary Framework
The OMS dictionary

model data, model param
phase, it provides and ma

ANOLOGY TRANSFER

guage (Arnold et al.,

Entries (XML}

nponent

ncing
itation

ige
nt

nponents important
5.1):

Figure 15.1a), the
ified by the data
ant (Figure 15.1¢)

ass (Figure 15.1¢)
nodule.

es are referencing
rected if both are
L objects allows a
ng a simple “data

:nted in different
ons of resources
perating systems
:d on XML style

Its in sophisticated
sumentation based

apsulate a number
nto considerations

THE OBJECT MODELING SYSTEM ' 323

- Data objects may be declared either private or public. Accessibility and visibility is realized by
publishing these data objects to the OMS framework.
« Public data objects can be shared among different modules. In this case a module is referencing

a previously published data object. The module is responsible for requesting the data object from
the modeling framework. If a data object is not shared, it is local only to the module.

// Declares basin and HRU physical parameters.
Module Declaration public class basinprms extends OMSComponent - {
OMSDouble o_basin_area = getOMSDouble (“basin_are”);
OMSDoubleArray o_hru_area = getOMSDoubleArray (“hru_area”, “nhru”)
OMSDoubleArray o_hru_imperv = getOMSDoubleArray (“hru_imperv”, nhru”)
OMSDoubleArray o_hru_percent_imperv = getOMSDoubleArray

(“hru_percent_imperv”, “nhru”)

OMSDoubleArray o_hru_perv = getOMSDoubleArray (“hru_perv”, “nhru™;
OMSDimension o_nhru = getOMSDimension (“nhru”};

Declared objects.
Initialized with data
generated by

OMS system

calls based on

data dictionary content

Figure 15.2 Data object declaration and system initiatization.

The declaration of data objects in a module is shown in Figure 15.2. Objects are generated
based on OMS API system calls. The identifiers must match the data dictionary entries (see example
in Figure 15.4).

Legacy Code Implementation

Wrapping is a technique to embed existing nonobject-oriented software into an object-oriented
architecture. Mapping interfaces of conventional systems into an object-oriented syntax enables
the access to this legacy code. This mapping procedure can be supported by wrapper generation
tools, which generate glue code for both software “worlds”” Wrapping provides some general
advantages:

» Keeping and reusing the existing software infrastructure as much as possible

+ Moving step by step toward object orientation

+ Accelerated introduction of object orientation

« “Separation of concerns” (graphical user interface vs. number crunching part, etc.)

A module contains a set of methods. Some of them are inherited from the super class OMSCom-
ponent. A module may implement additional methods. A module has to override the methods init(),
run() and cleanup() for interface functionality. A method for customization is used to provide
specific editors for setting up the module data objects. Such editors may be applications imple-
menting a kind of preprocessing prior model run.

OMS uses a sophisticated method to integrate native languages such as Fortran and C. Some
OMS framework tools support the integration of native code into modules. The example given in
Figure 15.3 shows how module data objects (input/output/local data objects) are mapped to Fortran
variables and parameters by mapping Java object properties to Fortran variables..

Dictionary Framework

The OMS dictionary provides and manages dictionary resources for model construction like
model data, model parameters, modules and models. In addition, during the model development
phase, it provides and manages parameter scenarios, time series data in model application. It also

324 AGRICULTURAL SYSTEM MODELS IN FIELD RESEARCH AND TECHNOLOGY TRANSFER

Intialization routine | public native int init ()} /*@F77

Property map section @propertymap o_basin_area.value -> basin_area;
connects Java data @propertymap o_hru_area.value1D -> hru_area;
objects to FORTRAN @propertymap o_hru_imperv.value1D -> imperv;
variables @propertymap o_hru_percent_imerv.value1D -> percent_imperv;
@propertymap o_hru_perv.valueiD -> hru_pery;
@propertymap o_nhru_value -> nhru
FORTRAN - @f
computation code real *8 totarea
implements integer i
process logic real *8 diff
totarea = 0.

@}
*/;

do 100i =1, nhru
hru_imperv (i) = hru_percent_imperv (i} * hru_area (i)
hru_perv (i} = hru_area (i) - hru_imperv (i)
totarea = totarea + hru_area (i)

100 continue

diff = (totarea - basin_area)/basin_area

if (abs (diff).ge. .01) then
omsExeption (‘Sum of hru areas is not equal to basin area’)
return

end if

init=0

Figure 15.3 Legacy code integration.

Data dictionary entry ID
Description

Version

Data category, range and
default value

Data type and unit

Author reference |

Figure 15.4 Data dictionary element.

<coms: data id="hru_elev’>
<oms:descrption>
<oms:short>Mean elevation</oms:short>
<oms:full>Mean elevation for each HRU </oms:full>
</oms:description>
<oms.version>
<oms:cdate>2001-08-15 02:24:39</oms:cdate>
<oms:mdate>2001-08-15 02:24:39</oms:mdate>
<oms:revision>1.0</oms:revision>
</oms:version>
<oms:value cat="par am”>
<oms:min>-300.</oms:min>
<oms:max>30000</oms:max>
<oms:default>0.</oms:default>
</oms:value>
<oms:unit cat="length”>feet</oms:unit>
<oms:type>float*8</oms:type>
<oms:author href="rojas” />
<oms:daia>

handles the interaction between several dictionary data sources with database management systems
and the modeling system. OMS dictionaries are written in XML.
The OMS dictionary design addresses two major issues:

I. The OMS dictionary XML resource file structure defines a generic and open scheme for describing
and processing sets of (heterogeneous) dictionary content.
2. The OMS dictionary GUI tool operates with dictionary XML resources and manages its content

in coordination with the other

OMS components of the framework to construct and apply a model.

THE OBJECT MODELINC

Figure 15.4 shows
tion about the paramet
requested by modules

OMS Dictionary Fr

A major dictiona
Format is available fc
for handling dictionari
These issues were tak

» A dictionary cC
the dictionaries
to a tabular vie

* A permission s¢
developers havi

» Dictionaries n:

query language

feature. Each d

XML as the pr

should be able

systems. There
database dictio

Dictionaries sh

must drive the

The dictionary

directional inte

to construct o1

dictionary as r

The logical st1

Other design cor
as possible, both for
resource definition f
OMS tools is possit

Modeling Systen

The OMS {ram
supports different ty
opment and applical
with a basic set of
extensions.

The OMS Comt
dling of common el
using a python shell.
look and feel but al
One powerful leaty
interaction of the C

OMS extension
according to model
of modeling:

LOGY TRANSFER

sin_area;

1 nran-e

d_aica,

perv;
rcent_imperv;
J.perv;

ru

asin area’)

ms:full>

ite>
Jate>

gement systems

for describing

ves its content
pply a model.

THE OBJECT MODELING SYSTEM 325

Figure 15.4 shows a dictionary element, which encapsulates all meta-information and informa-
tion about the parameter “hru_elev.” Based on this record the system is able to instantiate objects

0

(s igure 15.1) and initialize them properly.

h 3.-1
Aned e
requested by modules (see

OMS Dictionary Framework Architecture Design Considerations

A major dictionary design goal was to maximize transparency, openness and extensibility.
Format is available for data, module. parameter, or scenario dictionaries. The preferred solution
for handling dictionaries is a generic scheme where all of these special dictionaries could be mapped.
These issues were taken into account when designing the overall dictionary architecture:

A dictionary consists of data sets, which may be either homogenous or heterogeneous. Because
the dictionaries are written in XML, data sets are not document-oriented and should not limited
to a tabular view.

+ A permission scheme is required to control the operations associated with the dictionary. Dictionary
developers have the responsibility to set up appropriate permissions.

« Dictionaries may contain large scts of XML entries. Well-known approaches such as the XML
query language can filter information from an XML data set. A dictionary must deal with this
feature. Each dictionary must provide applicable queries to filter specific information. The use of
XML as the primary dictionary data format opens a wide range of other data sources. The system
shouald be able to generate XML dictionary documents from relational database management
systems. There must also be uniform and transparent support for local, remote (via a URL) and

datubase dictionaries.
« Dictionaries should be self-describing in terms of their data structures. The dictionary data content

must drive the behavior of any GUI tools.

« The dictionary GUI too! should be able to operate with other tools in OMS in an easy way. A bi-
directional interaction should be supported, so dictionary eniries may be “dragged” into other tools
{0 construct or run the model. New entries, such as modeling results, may be “dropped” into the
dictionary as modeling results.

« The logical structure of a dictionary must be mapped into a physical tool representation.

Other design considerations including keeping the dictionary file as simple and as transparent
as possible, both for humans and tor processing in the OMS framework. By using XML as dictionary
resource definition format and XPath for accessing elements of a dictionary, a slim architecture for
OMS tools is possible.

Modeling System GUI Design

The OMS framework uses a common core user interface (CommonUT). The CommonUI
supports different types of OMS extensions. Extensions implement different tools for model devel-
opment and application. OMS is open and configurable through the extension package. OMS comes
with a basic set of extensions, but also offers system developer an API to implement custom
extensions.

The OMS CommonUI provides the following functionality for all extension: GUI resource han-
dling of common elements; system logging: and a console interface to interact with the system by
using a python shell. The CommonUl enables extensions with slim implementation overhead, common
look and feel but also provides maximum flexibility to adapt the overall appearance of the system.
One powerful feature of the CommonUl is the python-scripting interface. It allows the dynamic
interaction of the CommonUl with extensions, based on shell commands.

OMS extensions implement the toolbox elements that can be used to customize the CommonUl
according to modeler needs. OMS comes with a basic set of extensions dealing with various facets

of modeling:

326 AGRICULTURAL SYSTEM MODELS IN FIELD RESEARCH AND TECHNOLOGY TRANSFER

* Development Extension — allows the interactive assembly of models based on a module library.
It provides support for module search, module retrieval and module integration from local and
remote sites according model requirements. It allows the validation of module connectivity using
input/output data constraints graphically. This extension delivers runable models.

+ Application Extension — deals with the interactive model application of runable models. It
provides automatically generated GUT elements for model parameterization, output customization,
graphical components for visualization of variables and parameter scenario management. This
extension delivers model results in terms of graphs and numbers.

* Dictionary Framework Extension — manages the modeling dictionaries. They are used to handle
the following modeling resources: module interfaces; parameters and variables; parameter sets:
and meteorological data set descriptors. Other extensions use this extension to validate the proper
module connectivity (development extension) or for parameter value assignment (application
extension).

Figure 15.5 OMS CommonUl and extensions.

Other types of extensions could be developed for post-run results analysis, GIS connectivity,
legacy code integration and model deployment using Web services. Figure 15.5 shows the OMS
CommonUI loaded with the extensions for model development, model application and the dictionary
framework. Each extension appears as a folder node in the model resource tree on the left side of
the window. All extension related resources are sub-nodes of their folder. The common logging
panel and the console command line interface appear as tabbed panels on the bottom of the window.
The main part of the CommonUI occupies the extension desktop in the center of the window. The
desktop is customized according to the extension implementation purpose.

OMS Model Views and Deployment

Enabling simulation models to run under different architectures and computing environments
becomes more and more important, especially with the increasing demand for Web-based applica-
tion of simulation models. OMS is designed to cover a variety of application and deployment and
execution paradigms:

* The OMS application gets deployed by Java Web Start Technology over the Internet. This ensures
the local client instatlation, automated update and security of OMS. Models being developed with
OMS in such a scenario are running within OMS. This setting is typical tor a development
application, where the modeler needs flexibility to change the models module structure, parameter

sets, as well as input data.
» The application of OMS models as canned models is required when validated OMS models are
applied in projects or application scenarios. There is no need to change the structure of the model

THE OBJECT MODELING

or have the tlexibil
of an adaptive, m¢
*« OMS models can
runtime environm
models. Precontfig
client site deals or

Within OMS it is pc
changing the model st
run under a Web-only e

Figure 15.6 Loaded PRM

For proof of conce
interaction. The hydrolo
OMS. The goal was to
resource descriptors anc

PRMS is a determi
A watershed is divide
conceptualization of Pk
of interlinked reservoir
of PRMS reflect the vz
tested) consists of [4 p

"The test application
River basin, a subcatcht
was used for validation.”
sel tool (Leavesley et al.

Figurce 15.6 shows (
node in the resource
loaded PRMS runtime
generating GUI elemer

Although the PRM
required for the Java en
generation could preve
following steps in code

JLOGY TRANSFER

module library.
from local and
anectivily usi
able models. It
“customization,
nagement. This

s used to handle
parameter sets:
date the proper
nt (application

IS connectivity.
hows the OMS
id the dictionary

the left side of
ymmon logging
1 of the window.
1e window. The

g environments
-based applica-
leployment and

. This ensures
xveloped with
development
Ire, parameter

S models are
of the model

e hmesmts s Wi A A

THE OBJECT MODELING SYSTEM 327

or have the flexibility of automatically generated GUT components for parameterization. The usage
of an adaptive. model-specific GUT directs the model user.

< OMS models can be executed in a server-centric environment, Handled by a Web server, an OMS
runtime environment produces a generic Web interface to enable a Web browser application of
models. Preconfigured parameter and data sets can be accessed at the server side, whereas the

client site deals only with a Web browser for model input and output.

Within OMS it is possible to transfer an existing model to different execution schemes without
changing the model structure. Models being developed with the OMS environment are capable to
run under a Web-only environment.

BEPeTRIPILIIVVIOIPY

X3

&
g

Figure 15.6 Loaded PRMS modules and PRMS generic parameterization GUL

EXAMPLE APPLICATION OF PRMS

For proof of concept, a prototype model was developed to test component integration and
interaction. The hydrological model PRMS, (Leavesley et al., 1983) was selected for integration into
OMS. The goal was to transform the model structure into OMS modules and their related XML
resource descriptors and compare the model output with the validated version of the model in MMS.

PRMS is a deterministic, distributed, continuous hydrological model (Leavesley et al., 1983).
A watershed is divided into homogeneous hydrological response units (HRUs). The modular
conceptualization of PRMS is reflected by simulating the hydrological system as a vertical series
of interlinked reservoirs. Each hydrological process is represented as a separate module. Variants
of PRMS reflect the variable characteristics of different catchments. The basic PRMS model (as
tested) consists of 14 process modules (Figure 15.6).

The test application for OMS also contained a meteorological data and a parameter set for the East
River basin, a subcatchment of the Gunnison River basin in Colorado. A 20-year set of climate data
was used for validation. The East River parameter set was preprocessed and generated by the GIS-Wea-
sel t0o] (Leavesley et al. 1997). Both, the parameter set and the time series input where in MMS formats.

Figure 15.6 shows OMS with modules forming the PRMS model. The Component Development
node in the resource tree contains the PRMS OMS model build upon the 14 sub-modules. The
loaded PRMS runtime was configured with the East-River Parameter Set. OMS is automatically
generating GUI elements for parameter input such as spreadsheets for one-dimensional arrays.

Although the PRMS source code was already modularized for MMS, some recoding was
required for the Java environment. PRMS modules are implemented in Fortran77. Automated code
generation could prevent many of the errors that were introduced by the manual procedure. The
following steps in code migration were performed:

328 AGRICULTURAL SYSTEM MODELS IN FIELD RESEARCH AND TECHNOLOGY TRANSFER

L. The MMS runtime library was modified for capturing each modules interface calls (reading/writing
to variables/parameter/dimensions). XML-intermediate module descriptors for this information
were generated.

The Java OMSComponent file and the XML component descriptor were generated from the
intermediate descriptor. Data objects referenced by MMS system calls in MMS/PRMS modules
resulted in OMS/PRMS data objects referencing data dictionary elements. This transformation was
done automatically.

3. The Java OMSComponents were extended with Fortran science code, embedded into the initial-

+
L

(3]

ization, processing and cleanup section o
piler test run) and added to the code.

4. OMS tools and compiler were used to generate binary executable code (Java class files, dynamic
link libraries).

5. A total of 456 parameters, variables and dimensions were identified and generated. For each of
them, an XML data dictionary element was generated and added to a PRMS data dictionary.

6. The East River parameter set was converted into an XML OMS parameter file and added to a
parameter dictionary.

~ T 1 oy ‘q Shad f
. S antified
each component. L.ocal variables were identified {Com-

Figure 15.7 PRMS run in OMS — comparison of basin runoff from OMS vs. MMS and observed data.

The modules were loaded into a running OMS framework. The driving variables were traced
for each component to verify the input. The output variables were plotted and compared with
corresponding MMS/PRMS variables. Finally, the simulated basin runoff for the OMS and the
MMS version of PRMS was plotted with the observed runoff. Figure 15.7 shows the result, matching
graphs for MMS and OMS values for the basin runoff.

CONCLUSION

The OMS introduced in this chapter is a framework that facilitates the development of custom-
ized models from a library of science, data and utility modules, as well as their testing, application
and deployment. OMS features component integration techniques, graphical user interface compo-
nents, graphical visualization features and other utilities supporting model construction and appli-
cation. The design of OMS was influenced and driven by the needs of agricultural and natural
resource agencies to optimize the models, development process and maintenance. Due to the
increasing complexity of the simulation problems encountered in natural resource and environmen-
tal management model development can only be efficient by using methods and tools such as OMS.
Due to its dedication to modularized model development, OMS offers the potential for science
building block reuse and easy update and maintenance.

Model management and transfer practices from the research unit development level to the field
office application level were considered in OMS design. Hence, the goal of this project is the design

THE OBJECT MODELIN

and implementation of
and reuse of environix
lead to a significant re
of GUI components 1
data components. Res
Zone Water Quality N

Future Developme

Future OMS deve
integration of GIS cap
in the context of moc
of the GIS extension®
parameterization in te
and results.

Another major O
and Universal Descri
to be discoverable ar
post-run analysis ext

The OMS Project
NRCS and the U.S. ¢

Abbot, M.B., J.C. Bat
European Hyd
based, distribu

Abel, D.J. and PJ. Kill

Arnold, K., J. Gosling
Addison-Wesl

Balmer, D.W. and R.J.
Simulation Co

Breunese, A.PJ., J.L.~
application. Si

Cota B.A. and Sargen
Modeling and

DeRemer, F. and H.H
Software Eng.

Fayad, M.E. and D. S

Leavesley, G.H., PJ. I
system (MMS

Leavesley, G.H., R.J.
environmental
elling and Ap;

Leavesley, G.H., R'W.
— user's man

Leavesley, G.H.. S.L.
design. scale
Processes, 10

NOLOGY TRANSFER

Is (reading/writing
r this information

nerated from the
S/PRMS modules
ansformation was

:d into the initial-
e identified (com-

ass files, dynamic

ated. For each of
ta dictionary.
e and added to a

bserved data.

ables were traced
d compared with
he OMS and the
eresult, matching

oment of custom-
sting, application
interface compo-
uction and appli-
tural and natural
mce. Due to the
and environmen-
ols such as OMS.
:nttal for science

level to the field
jectis the design

oty 2 e St e

THE OBJECT MODELING SYSTEM 329

and implementation of a modeling system that emphasizes interoperability, connectivity, scalability
and reuse of environmental simulation modules. The PRMS model was adapted into OMS, which
lead to a significant reduction of module implementation code. Results showed that a major fraction
of GUI components for model parameterization could be generated automatically from module
data components. Researchers are in the process of disaggregating another large model, the Root
Zone Water Quality Model (RZWQM), into OMS modules.

Future Developments

Future OMS development efforts will be leveraged by application and project demands. The
integration of G1S capabilities by means of an OMS extension will enable interactive geo-processing
in the context of model application. GIS implementation efforts are underway. The overall focus
of the GIS extension will be driven by the need of modeling related features. This comprises model
parameterization in terms of spatial parameter sets as well as spatial visualization of model progress
and results.

Another major OMS effort will focus on a deployment of simulation models using Web services
and Universal Description Discovery and Integration (UDDI). This will enable simulation models
to be discoverable and directly callable by other simulation environments. Other efforts include
post-run analysis extensions that will be integrated with descriptive statistics.

ACKNOWLEDGMENT

The OMS Project is supported and funded by the USDA-ARS, in collaboration with the USDA-
NRCS and the U.S. Geological Survey.

REFERENCES

Abbot, M.B., J.C. Bathurst, J.A. Cunge, PE. O'Connell and J. Rasmussen. 1986. An introduction to the
European Hydrological System — Systéme Hydrologique Européen (SHE), structure of a physically
based, distributed modelling system, J. Hydrology, 87:61-77

Abel. D.J. and PJ. Kilby. 1994. The systems integration problem, Int. J. Geographical Inf. Syst., 8(1):1-12.

Arnold, K., J. Gosling and D. Holmes. 2000. The Java™ Programming Language, Java™ Series, 3rd ed.
Addison-Wesley, Reading, MA.

Balmer, D.W. and R.J. Paul. 1990. Integrated support environments for simulation modelling, Proc. of Winter
Simulation Conf., December 9-12, New Orleans, Louisiana, 243-249.

Breunese. A.P.J.. J.L. Top, I.E. Broenink and J.M. Akkermans. 1998. Library of reusable models: theory and
application. Simulation Series. Simulation Councils Inc. 71(1):7-22.

Cota B.A. and Sargent R.G., 1992. A modification of the process interaction world view, ACM Trans. on
Modeling and Computer Simulation, 2(2):109-129.

DeRemer. F. and H.H. Kron. 1976. Programming-in-the-large vs. programming-in-the-small, /EEE Trans.
Software Eng., SE-2(N.2):114~121.

Fayad, M.E. and D. Schmidt. 1997. Object-oriented application frameworks. Commn. ACM, 40(10):32-38

Leavesley, G.H., P.J. Restrepo, S.L. Markstrom, M. Dixon and L.G. Stannard. 1996. The modular modeling
system (MMS) — user’s manual, U.S. Geological Survey Open-File Report 96-151.

Leavesley, G.H.. R.J. Viger, S.L. Markstrom and M.S. Brewer. 1997. A modular approach to integrating
environmental modeling and GIS. Proc. 15th IMACS World Congr. on Scientific Computation, Mod-
elling and Applied Mathematics, August 24-29, Berlin, Germany.

Leavesley, G.H., R-W. Lichty, B.M. Troutman and L.G. Saindon. 1983. Precipitation-runoff modeling system
__ user's manual, U.S. Geological Survey Water Resources Investigation Report 83-4238.

Leavesley, G.H., S.L. Markstrom, P.J. Restrepo and R.J. Viger. 2002. A modular approach to adressing model
design, scale and parameter estimation issues in distributed hydrological modeling, Hvdrological
Processes, 16(2):173-187.

330 AGRICULTURAL SYSTEM MODELS IN FIELD RESEARCH AND TECHNOLOGY TRANSFER

McCown, R.L., G.L. Hammer, J.N.G. Hargraves, D.L. Holzworth and D.M. 1995. APSIM: a novel software
system for model development, model testing and simulation in agricultural systems research, Agri-
cultural Syst., 50:255-271.

Panagiotis, K.L., S. Molterer and B. Paech. 1998. Re-Engineering for Reuse: Integrating Reuse Techniques
into the Reengineering Process. citeseer.nj.nec.com/linos98reengineering html.

Pidd M. and R. Bayer Castro. 1998. Hierarchical modular modeling in discrete simulation, Proc. 1998 Winter
Simulation Conference, D.J. Medeiros et al., Eds., IEEE, Washington, D.C., 383-390.

Praehofer, H. 1996. Object-oriented modeling and configuration of simulation programs. In Eur Meer. on
Cybernetics and Syst. Res., Vienna, Austria, April, 259-264.

Singh, V.P. 1995. Computer Models in Watershed Hydrology, Water Resources Publications, Highlands Ranch, CO.

Top, J.L., A.P.J. Breunese, J.FBroenink and J.M. Akkermans. 1997. Structure and use of a library for physical
system models, Proc. ICBGM'95, 2nd Int. Conf. Bond Graph Modeling and Simulation, Las Vegas,
Nevada, January 15-18, SCS Publishing, San Diego, CA, Simulation Series, 27(1):97-105.

Ulgen, OM., O. Norm and T. Thomasma. 1991. Reusable models: making your models more user-friendly,
Proc. 1991 Winter Simulation Conf., December 8-11, Phoenix, AZ, 148-]51.

Whelan, G., K. J. Castleton, J.W. Buck, G.M. Gelston, B.L. Hoopes, M.A. Pelton, D.L. Strenge and R.N.
Kickert. 1997. Concepts of a Framework for Risk Analysis in Multimedia Environment Svstems
(FRAMES), PNNL-11748, Pacific Northwest National Laboratory, Richland, WA.

Zeigler, B.P. 1990. Object-Oriented Simulation with Hierarchical, Modular Models, New York Academic
Press, San Diego.

Fi

Jerry L. Hatfield and

CONTENTS

Introduction
Application of Current
Soil Components.........
Plant Components
Atmospheric Constitue
Issues In Scaling
Conclusions
References

Simulation models
These models have ran
within the soil-plant-a
generated from a wide
of processes and to be
Ritchie (1991) assemb
Since that time there t
models for agricuftural
perfect model is to be
explore some of the ¢
systems models.

Models are represet
with much more predi
predict the trajectory ¢
into space and to inte
chemical reactions bec
10 predict biological s
vations of our unders
equations. We learn frc

1-56670-0563/02/50.00+51.50
&3 2002 by CRC Press LLC

